Expression of genes associated with immunity in the endometrium of cattle with disparate postpartum uterine disease and fertility
Tóm tắt
Contamination of the uterine lumen with bacteria is ubiquitous in cattle after parturition. Some animals develop endometritis and have reduced fertility but others have no uterine disease and readily conceive. The present study tested the hypothesis that postpartum cattle that develop persistent endometritis and infertility are unable to limit the inflammatory response to uterine bacterial infection. Endometrial biopsies were collected several times during the postpartum period from animals that were subsequently infertile with persistent endometritis (n = 4) or had no clinical disease and conceived to first insemination (n = 4). Quantitative PCR was used to determine the expression of candidate genes in the endometrial biopsies, including the Toll-like receptor (TLR 1 to 10) family of innate immune receptors, inflammatory mediators and their cognate receptors. Selected proteins were examined by immunohistochemistry. The expression of genes encoding pro-inflammatory mediators such as interleukins (IL1A, IL1B and IL6), and nitric oxide synthase 2 (NOS2) were higher during the first week post partum than subsequently. During the first week post partum, there was higher gene expression in infertile than fertile animals of TLR4, the receptor for bacterial lipopolysaccharide, and the pro-inflammatory cytokines IL1A and IL1B, and their receptor IL1R2. The expression of genes encoding other Toll-like receptors, transforming growth factor beta receptor 1 (TGFBR1) or prostaglandin E2 receptors (PTGER2 and PTGER4) did not differ significantly between the animal groups. Gene expression did not differ significantly between infertile and fertile animals after the first week postpartum. However, there were higher ratios of IL1A or IL1B mRNA to the anti-inflammatory cytokine IL10, during the first week post partum in the infertile than fertile animals, and the protein products of these genes were mainly localised to the epithelium of the endometrium. Cattle may maintain fertility by limiting the inflammatory response to postpartum bacterial infection in the endometrium during the first week after parturition.
Tài liệu tham khảo
Williams EJ, Fischer DP, Noakes DE, England GC, Rycroft A, Dobson H, Sheldon IM: The relationship between uterine pathogen growth density and ovarian function in the postpartum dairy cow. Theriogenology. 2007, 68: 549-559. 10.1016/j.theriogenology.2007.04.056.
Griffin JFT, Hartigan PJ, Nunn WR: Non-specific uterine infection and bovine fertility. I. Infection patterns and endometritis during the first seven weeks post-partum. Theriogenology. 1974, 1: 91-106. 10.1016/0093-691X(74)90052-1.
Sheldon IM, Cronin J, Goetze L, Donofrio G, Schuberth HJ: Defining Postpartum Uterine Disease and the Mechanisms of Infection and Immunity in the Female Reproductive Tract in Cattle. Biol Reprod. 2009
Gilbert RO, Shin ST, Guard CL, Erb HN: Incidence of endometritis and effects on reproductive performance of dairy cows. Theriogenolgy. 1998, 49: 251-10.1016/S0093-691X(98)90604-5.
Herath S, Fischer DP, Werling D, Williams EJ, Lilly ST, Dobson H, Bryant CE, Sheldon IM: Expression and function of Toll-like receptor 4 in the endometrial cells of the uterus. Endocrinology. 2006, 147: 562-570. 10.1210/en.2005-1113.
Soboll G, Shen L, Wira CR: Expression of Toll-like receptors (TLR) and responsiveness to TLR agonists by polarized mouse uterine epithelial cells in culture. Biol Reprod. 2006, 75: 131-139. 10.1095/biolreprod.106.050690.
Schaefer TM, Desouza K, Fahey JV, Beagley KW, Wira CR: Toll-like receptor (TLR) expression and TLR-mediated cytokine/chemokine production by human uterine epithelial cells. Immunology. 2004, 112: 428-436. 10.1111/j.1365-2567.2004.01898.x.
Wira CR, Fahey JV: The innate immune system: gatekeeper to the female reproductive tract. Immunology. 2004, 111: 13-15. 10.1111/j.1365-2567.2004.01796.x.
King AE, Critchley HO, Kelly RW: Innate immune defences in the human endometrium. Reprod Biol Endocrinol. 2003, 1: 116-10.1186/1477-7827-1-116.
Akira S, Uematsu S, Takeuchi O: Pathogen recognition and innate immunity. Cell. 2006, 124: 783-801. 10.1016/j.cell.2006.02.015.
Beutler B: Inferences, questions and possibilities in Toll-like receptor signalling. Nature. 2004, 430: 257-263. 10.1038/nature02761.
Herath S, Lilly ST, Fischer DP, Williams EJ, Dobson H, Bryant CE, Sheldon IM: Bacterial lipopolysaccharide induces an endocrine switch from prostaglandin F2a to prostaglandin E2 in bovine endometrium. Endocrinology. 2009, 150: 1912-1920. 10.1210/en.2008-1379.
Davies D, Meade KG, Herath S, Eckersall PD, Gonzalez D, White JO, Conlan RS, O'Farrelly C, Sheldon IM: Toll-like receptor and antimicrobial peptide expression in the bovine endometrium. Reprod Biol Endocrinol. 2008, 6: 53-10.1186/1477-7827-6-53.
Janeway CA, Travers P, Walport M, Shlomchik MJ: Infectious agents and how they cause disease. Immunobiology: the immune system in health and disease. 2001, New York: Garland Publishing, 382-388.
Henderson B, Wilson M: Cytokine induction by bacteria: beyond lipopolysaccharide. Cytokine. 1996, 8: 269-282. 10.1006/cyto.1996.0036.
Couper KN, Blount DG, Riley EM: IL-10: the master regulator of immunity to infection. J Immunol. 2008, 180: 5771-5777.
Xu XJ, Reichner JS, Mastrofrancesco B, Henry WL, Albina JE: Prostaglandin E2 suppresses lipopolysaccharide-stimulated IFN-beta production. J Immunol. 2008, 180: 2125-2131.
Zerbe H, Schuberth HJ, Engelke F, Frank J, Klug E, Leibold W: Development and comparison of in vivo and in vitro models for endometritis in cows and mares. Theriogenology. 2003, 60: 209-223. 10.1016/S0093-691X(02)01376-6.
Skarzynski DJ, Miyamoto Y, Okuda K: Production of prostaglandin F2α by cultured bovine endometrial cells in response to tumor necrosis factor α: cell type specificity and intracellular mechanisms. Biol Reprod. 2000, 62: 1116-1120. 10.1095/biolreprod62.5.1116.
Spicer LJ: Tumor necrosis factor-α (TNF-α) inhibits steroidogenesis of bovine ovarian granulosa and thecal cells in vitro. Involvement of TNF-α receptors. Endocrine. 1998, 8: 109-115. 10.1385/ENDO:8:2:109.
Leung ST, Cheng Z, Sheldrick EL, Derecka K, Flint AP, Wathes DC: The effects of lipopolysaccharide and interleukins-1alpha, -2 and -6 on oxytocin receptor expression and prostaglandin production in bovine endometrium. Journal of Endocrinology. 2001, 168: 497-508. 10.1677/joe.0.1680497.
Sheldon IM, Noakes DE, Rycroft AN, Pfeiffer DU, Dobson H: Influence of uterine bacterial contamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle. Reproduction. 2002, 123: 837-845. 10.1530/rep.0.1230837.
Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. 2000, Totowa, NJ: Humana Press
Dohmen MJ, Joop K, Sturk A, Bols PE, Lohuis JA: Relationship between intra-uterine bacterial contamination, endotoxin levels and the development of endometritis in postpartum cows with dystocia or retained placenta. Theriogenology. 2000, 54: 1019-1032. 10.1016/S0093-691X(00)00410-6.
Munson L, Wilhite A, Boltz VF, Wilkinson JE: Transforming growth factor beta in bovine placentas. Biol Reprod. 1996, 55: 748-755. 10.1095/biolreprod55.4.748.
Wira CR, Rossoll RM: Oestradiol regulation of antigen presentation by uterine stromal cells: role of transforming growth factor-beta production by epithelial cells in mediating antigen-presenting cell function. Immunology. 2003, 109: 398-406. 10.1046/j.1365-2567.2003.01670.x.
Hirata T, Osuga Y, Hirota Y, Koga K, Yoshino O, Harada M, Morimoto C, Yano T, Nishii O, Tsutsumi O, Taketani Y: Evidence for the presence of toll-like receptor 4 system in the human endometrium. J Clin Endocrinol Metab. 2005, 90: 548-556. 10.1210/jc.2004-0241.
Crane-Godreau MA, Wira CR: CCL20/macrophage inflammatory protein 3alpha and tumor necrosis factor alpha production by primary uterine epithelial cells in response to treatment with lipopolysaccharide or Pam3Cys. Infect Immun. 2005, 73: 476-484. 10.1128/IAI.73.1.476-484.2005.
Richards JS, Liu Z, Shimada M: Immune-like mechanisms in ovulation. Trends in Endocrinology and Metabolism. 2008, 19: 191-196. 10.1016/j.tem.2008.03.001.
Dinarello CA: The interleukin-1 family: 10 years of discovery. FASEB J. 1994, 8: 1314-1325.
Gerard N, Caillaud M, Martoriati A, Goudet G, Lalmanach AC: The interleukin-1 system and female reproduction. J Endocrinol. 2004, 180: 203-212. 10.1677/joe.0.1800203.
Tanikawa M, Acosta TJ, Fukui T, Murakami S, Korzekwa A, Skarzynski DJ, Piotrowska KK, Park CK, Okuda K: Regulation of prostaglandin synthesis by interleukin-1alpha in bovine endometrium during the estrous cycle. Prostaglandins Other Lipid Mediat. 2005, 78: 279-290.
Arima K, Nasu K, Narahara H, Fujisawa K, Matsui N, Miyakawa I: Effects of lipopolysaccharide and cytokines on production of RANTES by cultured human endometrial stromal cells. Mol Hum Reprod. 2000, 6: 246-251. 10.1093/molehr/6.3.246.
Tagashira Y, Taniguchi F, Harada T, Ikeda A, Watanabe A, Terakawa N: Interleukin-10 attenuates TNF-alpha-induced interleukin-6 production in endometriotic stromal cells. Fertil Steril. 2008, 91: 2185-92. 10.1016/j.fertnstert.2008.04.052.