Reproductive Biology and Endocrinology
1477-7827
Cơ quản chủ quản: BioMed Central Ltd. , BMC
Lĩnh vực:
Reproductive MedicineDevelopmental BiologyObstetrics and GynecologyEndocrinology
Phân tích ảnh hưởng
Thông tin về tạp chí
Các bài báo tiêu biểu
TRIzol treatment of secretory phase endometrium allows combined proteomic and mRNA microarray analysis of the same sample in women with and without endometriosis Abstract
Background
According to mRNA microarray, proteomics and other studies, biological abnormalities of eutopic endometrium (EM) are involved in the pathogenesis of endometriosis, but the relationship between mRNA and protein expression in EM is not clear. We tested for the first time the hypothesis that EM TRIzol extraction allows proteomic Surface Enhanced Laser Desorption/Ionisation Time-of-Flight Mass Spectrometry (SELDI-TOF MS) analysis and that these proteomic data can be related to mRNA (microarray) data obtained from the same EM sample from women with and without endometriosis.
Methods
Proteomic analysis was performed using SELDI-TOF-MS of TRIzol-extracted EM obtained during secretory phase from patients without endometriosis (n = 6), patients with minimal-mild (n = 5) and with moderate-severe endometriosis (n = 5), classified according to the system of the American Society of Reproductive Medicine. Proteomic data were compared to mRNA microarray data obtained from the same EM samples.
Results
In our SELDI-TOF MS study 32 peaks were differentially expressed in endometrium of all women with endometriosis (stages I-IV) compared with all controls during the secretory phase. Comparison of proteomic results with those from microarray revealed no corresponding genes/proteins.
Conclusion
TRIzol treatment of secretory phase EM allows combined proteomic and mRNA microarray analysis of the same sample, but comparison between proteomic and microarray data was not evident, probably due to post-translational modifications.
- 2010
Identification of differentially expressed ovarian genes during primary and early secondary oocyte growth in coho salmon, Oncorhynchus kisutch
Tập 6 Số 1 - 2008
cDNA microarray analysis of bovine embryo gene expression profiles during the pre-implantation period
Tập 2 - Trang 1-16 - 2004
After fertilization, embryo development involves differentiation, as well as development of the fetal body and extra-embryonic tissues until the moment of implantation. During this period various cellular and molecular changes take place with a genetic origin, e.g. the elongation of embryonic tissues, cell-cell contact between the mother and the embryo and placentation. To identify genetic profiles and search for new candidate molecules involved during this period, embryonic gene expression was analyzed with a custom designed utero-placental complementary DNA (cDNA) microarray. Bovine embryos on days 7, 14 and 21, extra-embryonic membranes on day 28 and fetuses on days 28 were collected to represent early embryo, elongating embryo, pre-implantation embryo, post-implantation extra-embryonic membrane and fetus, respectively. Gene expression at these different time points was analyzed using our cDNA microarray. Two clustering algorithms such as k-means and hierarchical clustering methods identified the expression patterns of differentially expressed genes across pre-implantation period. Novel candidate genes were confirmed by real-time RT-PCR. In total, 1,773 individual genes were analyzed by complete k-means clustering. Comparison of day 7 and day 14 revealed most genes increased during this period, and a small number of genes exhibiting altered expression decreased as gestation progressed. Clustering analysis demonstrated that trophoblast-cell-specific molecules such as placental lactogens (PLs), prolactin-related proteins (PRPs), interferon-tau, and adhesion molecules apparently all play pivotal roles in the preparation needed for implantation, since their expression was remarkably enhanced during the pre-implantation period. The hierarchical clustering analysis and RT-PCR data revealed new functional roles for certain known genes (dickkopf-1, NPM, etc) as well as novel candidate genes (AW464053, AW465434, AW462349, AW485575) related to already established trophoblast-specific genes such as PLs and PRPs. A large number of genes in extra-embryonic membrane increased up to implantation and these profiles provide information fundamental to an understanding of extra-embryonic membrane differentiation and development. Genes in significant expression suggest novel molecules in trophoblast differentiation.
Effects of indomethacin on ovarian leukocytes during the periovulatory period in the rat
Tập 1 - Trang 1-11 - 2003
We have investigated the effects of indomethacin (IM), a non-steroidal anti-inflammatory drug, and the role of prostaglandins on the accumulation of leukocytes in the rat ovary during the periovulatory period. Adult cycling rats were injected sc with 1 mg of IM in olive oil or vehicle on the morning of proestrus. Some animals were killed at 16:00 h in proestrus. On the evening (19:00 h) of proestrus, IM-treated rats were injected with 500 micrograms of prostaglandin E1 in saline or vehicle. Animals were killed at 01:30 and 09:00 h in estrus. There was an influx of macrophages, neutrophils, and eosinophils into the theca layers of preovulatory follicles, and of neutrophils and eosinophils into the ovarian medulla from 16:00 h in proestrus to 01:30 h in estrus. All these changes, except the accumulation of neutrophils in the theca layers of preovulatory follicles, were blocked by IM treatment. At 09:00 h in estrus, large clusters of neutrophils were observed in IM-treated rats, around abnormally ruptured follicles. The accumulation of leukocytes was not restored by prostaglandin supplementation, despite the inhibition of abnormal follicle rupture and restoration of ovulation in these animals. These results suggest that different mechanisms are involved in leukocyte accumulation in the ovary during the periovulatory period, and that the inhibitory effects of IM on the influx of leukocytes are not dependent on prostaglandin synthesis inhibition.
Influencing factors of pregnancy loss and survival probability of clinical pregnancies conceived through assisted reproductive technology
Tập 16 - Trang 1-12 - 2018
Pregnancies following assisted reproductive technology (ART) may have elevated potential risk of pregnancy loss (PL) when compared to natural conception. However, rare studies comprehensively analyzed the IVF/ICSI cycle-dependent factors for loss of clinical pregnancy. Therefore, we aimed to determine the ART subgroup-specific risks of PL throughout pregnancy and explore different risk factors for early miscarriage and late miscarriage among pregnancies conceived through ART. A retrospective cohort study was launched in two infertility treatment centers in Nanjing and Changzhou including 5485 IVF/ICSI embryo transfer cycles with known outcomes after clinical pregnancy by the end of 2015. Cox proportional hazards regression analysis was performed to estimate the hazard ratios and their 95% confidence intervals. The associations between survival time during pregnancy and demographics and clinical characteristics of clinical pregnancies were estimated using the Kaplan-Meier method and the Log-rank test. The overall PL rate in current ART population was 12.5%. Among the 685 pregnancy loss cycles, a total of 460 ended as early miscarriage, 191 as late miscarriage. We found couples in ART pregnancies demonstrated a significantly increased risk of PL as maternal age (HR = 1.31, Ptrend < 0.001) grows. Pregnancies received controlled ovarian hyperstimulation (COH) protocol like GnRH antagonist protocol (HR = 3.49, P < 0.001) and minimal stimulation protocol (HR = 1.83, P < 0.001) had higher risk of PL than GnRH-a long protocol. Notably, in contrast to fresh cycle, women who received frozen cycle embryo had a significant increased risk of early miscarriage (P < 0.001), while frozen cycle was linked with lower risk of late miscarriage (P = 0.045). In addition, four factors (maternal age, COH protocol, cycle type and serum hCG level 14 days after transfer) had independent impact on miscarriage mainly before 12 weeks of gestational age. With these findings in this study, clinicians may make it better to evaluate a patient’s risk of PL based on the maternal age at the time of treatment, COH protocol, cycle type and serum hCG level 14 days after transfer and the gestational week of the fetus, and we hope that it contributes to future study on its etiology and guide the clinical prevention and treatment.
Potential markers of preeclampsia – a review Abstract
Preeclampsia is a leading cause of maternal and fetal/neonatal mortality and morbidity worldwide. The early identification of patients with an increased risk for preeclampsia is therefore one of the most important goals in obstetrics. The availability of highly sensitive and specific physiologic and biochemical markers would allow not only the detection of patients at risk but also permit a close surveillance, an exact diagnosis, timely intervention (e.g. lung maturation), as well as simplified recruitment for future studies looking at therapeutic medications and additional prospective markers. Today, several markers may offer the potential to be used, most likely in a combinatory analysis, as predictors or diagnostic tools. We present here the current knowledge on the biology of preeclampsia and review several biochemical markers which may be used to monitor preeclampsia in a future, that, we hope, is not to distant from today.
Tập 7 Số 1 - 2009
Paternal Expressed Gene 10 (PEG10) is decreased in early-onset preeclampsia
Tập 21 - Trang 1-13 - 2023
Preeclampsia is a severe complication of pregnancy which is attributed to placental dysfunction. The retrotransposon, Paternal Expressed Gene 10 (PEG10) harbours critical placental functions pertaining to placental trophoblast cells. Limited evidence exists on whether PEG10 is involved in preeclampsia pathogenesis. This study characterised the expression and regulation of PEG10 in placentas from patients with early-onset preeclampsia compared to gestation-matched controls. PEG10 expression was measured in plasma and placentas collected from patients with early-onset preeclampsia (< 34 weeks’) and gestation-matched controls using ELISA (protein) and RT-qPCR (mRNA). First-trimester human trophoblast stem cells (hTSCs) were used for in vitro studies. PEG10 expression was measured during hTSC differentiation and hTSC exposure to hypoxia (1% O2) and inflammatory cytokines (IL-6 and TNFα) using RT-qPCR. Functional studies used PEG10 siRNA to measure the effect of reduced PEG10 on canonical TGF-
$$\beta$$
signalling and proliferation using luciferase and xCELLigence assays, respectively. PEG10 mRNA expression was significantly reduced in placentas from patients with early-onset preeclampsia (< 34 weeks’ gestation) relative to controls (p = 0.04, n = 78 vs n = 18 controls). PEG10 protein expression was also reduced in preeclamptic placentas (p = 0.03, n = 5 vs n = 5 controls, blinded assessment of immunohistochemical staining), but neither PEG10 mRNA nor protein could be detected in maternal circulation. PEG10 was most highly expressed in hTSCs, and its expression was reduced as hTSCs differentiated into syncytiotrophoblasts (p < 0.0001) and extravillous trophoblasts (p < 0.001). Trophoblast differentiation was not altered when hTSCs were treated with PEG10 siRNA (n = 5 vs n = 5 controls). PEG10 was significantly reduced in hTSCs exposed to hypoxia (p < 0.01). PEG10 was also reduced in hTSCs treated with the inflammatory cytokine TNF
$$\alpha$$
(p < 0.01), but not IL-6. PEG10 knocked down (siRNA) in hTSCs showed reduced activation of the canonical TGF-β signalling effector, the SMAD binding element (p < 0.05) relative to controls. PEG10 knockdown in hTSCs however was not associated with any significant alterations in proliferation. Placental PEG10 is reduced in patients with early-onset preeclampsia. In vitro studies suggest that hypoxia and inflammation may contribute to PEG10 downregulation. Reduced PEG10 alters canonical TGF-
$$\beta$$
signalling, and thus may be involved in trophoblast dysfunction associated with this pathway.
Comparative proteomic analysis of spermatozoa isolated by swim-up or density gradient centrifugation
Tập 13 - Trang 1-7 - 2015
Reports about the morphologic and functional characteristics of spermatozoa prepared by density gradient centrifugation (DC) or swim-up (SU) have produced discordant results. We have performed a proteomic comparison of cells prepared by DC and SU providing a molecular insight into the differences between these two methods of sperm cell isolation. Protein maps were obtained by 2-dimensional (2-D) separations consisting of isoelectrofocusing (IEF) from pI 3 to 11 followed by SDS-polyacrylamide gel electrophoresis. 2-D gels were stained with Sypro Ruby. Map images of DC and SU spermatozoa were compared using dedicated software. Intensities of a given spot were considered different between DC and SU when their group mean differed by >1.5-fold (p < 0.05, Anova). No differences were observed for 853 spots, indicating a 98.7% similarity between DC and SU. Five spots were DC > SU and 1 was SU > DC. Proteins present in 3 of the differential spots could be identified. One DC > SU spot contained lactate dehydrogenase C and gamma-glutamylhydrolase, a second DC > SU spot contained fumarate hydratase and glyceraldehyde-3-phosphate dehydrogenase-2, and a SU > DC spot contained pyruvate kinase M1/M2. The differences in protein levels found on comparison of DC with SU spermatozoa indicate possible dissimilarities in their glycolytic metabolism and DNA methylation and suggest that DC cells may have a better capacitation potential.