An energy-efficient optimization of the hard turning using rotary tool
Tóm tắt
Tài liệu tham khảo
Kishawy HA, Wilcox J (2003) Tool wear and chip formation during hard turning with self-propelled rotary tools. Int J Mach Tools Manuf 43(4):433–439. https://doi.org/10.1016/s0890-6955(02)00239-0
Dessoly V, Melkote SN, Lescalier C (2004) Modeling and verification of cutting tool temperatures in rotary tool turning of hardened steel. Int J Mach Tools Manuf 44(14):1463–1470. https://doi.org/10.1016/j.ijmachtools.2004.05.007
Wang SH, Zhu X, Li X, Turyagyenda G (2006) Prediction of cutting force for self-propelled rotary tool using artificial neural networks. J Mater Process Technol 180(1–3):23–29. https://doi.org/10.1016/j.jmatprotec.2006.04.123
Suzuki N, Suzuki T, An R, Ukai K, Shamoto E, Hasegawa Y, Horiike N (2014) Force prediction in cutting operations with self-propelled rotary tools considering bearing friction. Procedia CIRP 14:125–129. https://doi.org/10.1016/j.procir.2014.03.033
Thellaputta GR, Raju CS, Bose PSC, Rao CSP (2017) Adaptive neuro fuzzy model development for prediction of cutting forces in milling with rotary tools. Mater Today Proc 5(2):7429–7436. https://doi.org/10.1016/j.matpr.2017.11.414
Nguyen TT, Mia M, Dang XP, Le CH, Michael SP (2020) Green machining for the dry milling process of stainless steel 304. Proc Inst Mech Eng B 234(5):881–899. https://doi.org/10.1177/0954405419888126
Basarir H, Elchalakani M, Karrech A (2019) The prediction of ultimate pure bending moment of concrete-filled steel tubes by adaptive neuro-fuzzy inference system (ANFIS). Neural Comput Appl 31:1239. https://doi.org/10.1007/s00521-017-3108-3
Dey S, Mukhopadhyay T, Adhikari S (2017) Metamodel based high-fidelity stochastic analysis of composite laminates: a concise review with critical comparative assessment. Compos Struct 171:227–250. https://doi.org/10.1016/j.compstruct.2017.01.061