Adenovirus-mediated SIRT1 protects cochlear strial marginal cells in a D-gal-induced senescent model in vitro
Tóm tắt
Tài liệu tham khảo
Force USPST, Krist AH, Davidson KW et al (2021) Screening for hearing loss in older adults: US preventive services task force recommendation statement. JAMA 325(12):1196–1201. https://doi.org/10.1001/jama.2021.2566
Gates GA, Mills JH (2005) Presbycusis. The Lancet 366(9491):1111–1120. https://doi.org/10.1016/s0140-6736(05)67423-5
Wang J, Puel JL (2018) Toward cochlear therapies. Physiol Rev 98(4):2477–2522. https://doi.org/10.1152/physrev.00053.2017
Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148(6):1145–1159. https://doi.org/10.1016/j.cell.2012.02.035
Zhang Y, Fang Q, Wang H et al (2022) Increased mitophagy protects cochlear hair cells from aminoglycoside-induced damage. Autophagy. https://doi.org/10.1080/15548627.2022.2062872
Kauppila TES, Kauppila JHK, Larsson NG (2017) Mammalian mitochondria and aging: an update. Cell Metab 25(1):57–71. https://doi.org/10.1016/j.cmet.2016.09.017
Fu X, Li P, Zhang L et al (2022) Activation of Rictor/mTORC2 signaling acts as a pivotal strategy to protect against sensorineural hearing loss. PNAS 119(10):e2107357119. https://doi.org/10.1073/pnas.2107357119
Hong G, Fu X, Qi J et al (2022) Dock4 is required for the maintenance of cochlear hair cells and hearing function. Fundamental Res. https://doi.org/10.1016/j.fmre.2022.04.016
Tao Y, Liu X, Yang L et al (2022) AAV-ie-K558R mediated cochlear gene therapy and hair cell regeneration. Signal Transduct Target Ther. https://doi.org/10.1038/s41392-022-00938-8
Ding B, Walton JP, Zhu X et al (2018) Age-related changes in Na, K-ATPase expression, subunit isoform selection and assembly in the stria vascularis lateral wall of mouse cochlea. Hear Res 367:59–73. https://doi.org/10.1016/j.heares.2018.07.006
Zhao X, Sun J, Hu Y et al (2013) The effect of overexpression of PGC-1α on the mtDNA4834 common deletion in a rat cochlear marginal cell senescence model. Hear Res 296:13–24. https://doi.org/10.1016/j.heares.2012.11.007
Xu C, Wang L, Fozouni P et al (2020) SIRT1 is downregulated by autophagy in senescence and ageing. Nat Cell Biol 20(10):1170–1179. https://doi.org/10.1038/s41556-020-00579-5
Packer M (2020) Longevity genes, cardiac ageing, and the pathogenesis of cardiomyopathy: implications for understanding the effects of current and future treatments for heart failure. Eur Heart J 41(39):3856–3861. https://doi.org/10.1093/eurheartj/ehaa360
Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13(4):225–238. https://doi.org/10.1038/nrm3293
Chang HC, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25(3):138–145. https://doi.org/10.1016/j.tem.2013.12.001
Sun J, Tai S, Tang L et al (2021) Acetylation modification during autophagy and vascular aging. Front Physiol 12:598267. https://doi.org/10.3389/fphys.2021.598267
He M, Chiang H-H, Luo H et al (2020) An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance. Cell Metab 31(3):580–591. https://doi.org/10.1016/j.cmet.2020.01.009
Xiong H, Dai M, Ou Y et al (2014) SIRT1 expression in the cochlea and auditory cortex of a mouse model of age-related hearing loss. Exp Gerontol 51:8–14. https://doi.org/10.1016/j.exger.2013.12.006
Cheng A, Yang Y, Zhou Y et al (2016) Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges. Cell Metab 23(1):128–142. https://doi.org/10.1016/j.cmet.2015.10.013
Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950. https://doi.org/10.1152/physrev.00026.2013
Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453-462. https://doi.org/10.1016/j.cub.2014.03.034
Keithley EM (2020) Pathology and mechanisms of cochlear aging. J Neurosci Res 98(9):1674–1684. https://doi.org/10.1002/jnr.24439
Gratton MA, Rao VH, Meehan DT et al (2005) Matrix metalloproteinase dysregulation in the stria vascularis of mice with alport syndrome. Am J Pathol 166(5):1465–1474. https://doi.org/10.1016/S0002-9440(10)62363-2
Meehan DT, Delimont D, Dufek B et al (2016) Endothelin-1 mediated induction of extracellular matrix genes in strial marginal cells underlies strial pathology in alport mice. Hear Res 11(341):100–108. https://doi.org/10.1016/j.heares.2016.08.003
Wang M, Dong Y, Gao S et al (2022) Hippo/YAP signaling pathway protects against neomycin-induced hair cell damage in the mouse cochlea. Cell Mol Life Sci 79(2):79. https://doi.org/10.1007/s00018-021-04029-9
Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108. https://doi.org/10.1038/nprot.2008.73
Du Z, He L, Tu C et al (2019) Mitochondrial DNA 3,860-bp deletion increases with aging in the auditory nervous system of C57BL/6J mice. ORL J Otorhinolaryngol Relat Spec 81(2–3):92–100. https://doi.org/10.1159/000499475
Du Z, Yu S, Qi Y et al (2019) NADPH oxidase inhibitor apocynin decreases mitochondrial dysfunction and apoptosis in the ventral cochlear nucleus of d-galactose-induced aging model in rats. Neurochem Int 124:31–40. https://doi.org/10.1016/j.neuint.2018.12.008
Bock FJ, Tait SWG (2019) Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 21(2):85–100. https://doi.org/10.1038/s41580-019-0173-8
Deshwal S, Fiedler KU, Langer T (2020) Mitochondrial proteases: multifaceted regulators of mitochondrial plasticity. Annu Rev Biochem 89:501–528. https://doi.org/10.1146/annurev-biochem-062917-012739
Izuo N, Nojiri H, Uchiyama S et al (2015) Brain-specific superoxide dismutase 2 deficiency causes perinatal death with spongiform encephalopathy in mice. Oxid Med Cell Longev 2015. https://doi.org/10.1155/2015/238914
Fortunato G, Marciano E, Zarrilli F et al (2004) Paraoxonase and superoxide dismutase gene polymorphisms and noise-induced hearing loss. Clin Chem. https://doi.org/10.1373/clinchem.2004.037788
Kauppila JHK, Bonekamp NA, Mourier A et al (2018) Base-excision repair deficiency alone or combined with increased oxidative stress does not increase mtDNA point mutations in mice. Nucleic Acids Res 46(13):6642–6669. https://doi.org/10.1093/nar/gky456
Gentile G, Paciello F, Zorzi V et al (2020) miRNA and mRNA profiling links connexin deficiency to deafness via early oxidative damage in the mouse stria vascularis. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2020.616878
Yan T, Huang J, Nisar MF et al (2019) The beneficial roles of SIRT1 in drug-induced liver injury. Oxid Med Cell Longev 2019:8506195. https://doi.org/10.1155/2019/8506195
Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337
Han N, Wang Z, Li X (2021) Melatonin alleviates d-galactose-decreased hyaluronic acid production in synovial membrane cells via Sirt1 signalling. Cell Biochem Funct. https://doi.org/10.1002/cbf.3613
Cox CS, McKay SE, Holmbeck MA et al (2018) Mitohormesis in mice via sustained basal activation of mitochondrial and antioxidant signaling. Cell Metab 28(5):776–786. https://doi.org/10.1016/j.cmet.2018.07.011