A Spotter’s guide to dispersion in non-catalytic surface-confined voltammetry experiments

Journal of Electroanalytical Chemistry - Tập 894 - Trang 115204 - 2021
Henry O. Lloyd-Laney1, Martin J. Robinson1, Alan M. Bond2, Alison Parkin3, David J. Gavaghan1
1Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD United Kingdom
2School of Chemistry and the ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Vic. 3800 Australia
3Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom

Tài liệu tham khảo

Adamson, 2017, Analysis of HypD disulfide redox chemistry via optimization of fourier transformed ac voltammetric data, Anal. Chem., 89, 1565, 10.1021/acs.analchem.6b03589

Gavaghan, 2018, Use of Bayesian inference for parameter recovery in DC and AC Voltammetry, ChemElectroChem, 5, 917, 10.1002/celc.201700678

Bieniasz, 1998, Use of sensitivity analysis methods in the modelling of electrochemical transients: Part 3. Statistical error/uncertainty propagation in simulation and in nonlinear least-squares parameter estimation, J. Electroanal. Chem., 458, 209, 10.1016/S0022-0728(98)00354-4

Rowe, 1995, Consequences of kinetic dispersion on the electrochemistry of an adsorbed redox-active monolayer, Langmuir, 11, 1797, 10.1021/la00005a059

Clark, 1997, Voltammetric peak broadening for cytochrome c/alkanethiolate monolayer structures: dispersion of formal potentials, Langmuir, 13, 559, 10.1021/la960650+

Morris, 2015, Theoretical analysis of the relative significance of thermodynamic and kinetic dispersion in the dc and ac voltammetry of surface-confined molecules, Langmuir, 31, 4996, 10.1021/la5042635

Salverda, 2010, Fluorescent cyclic voltammetry of immobilized azurin: direct observation of thermodynamic and kinetic heterogeneity, Angew. Chem. Int. Ed., 49, 5776, 10.1002/anie.201001298

Patil, 2010, Visualizing and tuning thermodynamic dispersion in metalloprotein monolayers, J. Am. Chem. Soc., 132, 16938, 10.1021/ja1065448

Léger, 2002, Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in [NiFe]-hydrogenase and other enzymes, J. Phys. Chem. B, 106, 13058, 10.1021/jp0265687

Fourmond, 2013, Steady-state catalytic wave-shapes for 2-electron reversible electrocatalysts and enzymes, J. Am. Chem. Soc., 135, 3926, 10.1021/ja311607s

Fourmond, 2017, Modelling the voltammetry of adsorbed enzymes and molecular catalysts, Curr. Opin. Electrochem., 1, 110, 10.1016/j.coelec.2016.11.002

Stevenson, 2013, Access to enhanced differences in Marcus-Hush and Butler-Volmer electron transfer theories by systematic analysis of higher order AC harmonics, Phys. Chem. Chem. Phys., 15, 2210, 10.1039/C2CP43193A

Adamson, 2017, Probing biological redox chemistry with large amplitude Fourier transformed ac voltammetry, Chem. Commun., 53, 9519, 10.1039/C7CC03870D

Laborda, 2013, Asymmetric Marcus-Hush theory for voltammetry, Chem. Soc. Rev., 42, 4894, 10.1039/c3cs35487c

Viswanathan, 2012, Simulating linear sweep voltammetry from first-principles: application to electrochemical oxidation of water on Pt (111) and Pt3Ni (111), J. Phys. Chem. C, 116, 4698, 10.1021/jp210802q

Bond, 2005, Changing the look of voltammetry, Anal. Chem., 77, 10.1021/ac053370k