Determination of kinetic and thermodynamic parameters from large amplitude Fourier transform ac voltammetry of immobilized electroactive species

Journal of Electroanalytical Chemistry - Tập 876 - Trang 114729 - 2020
D. Zouraris1, A. Karantonis1
1Laboratory of Physical Chemistry and Applied Electrochemistry, School of Chemical Engineering, National Technical University of Athens, 15780 Zografou, Athens, Greece

Tài liệu tham khảo

Guo, 2015, Fourier transformed large amplitude alternating current voltammetry: principles and applications, Rev. Polarogr., 61, 21, 10.5189/revpolarography.61.21 Zouraris, 2017, Kinetic and amperometric study of the MtPerII peroxidase isolated from the ascomycete fungus Myceliophthora thermophila, Bioelectrochem, 118, 19, 10.1016/j.bioelechem.2017.06.011 Adamson, 2015, Electrochemical evidence that pyranopterin redox chemistry controls the catalysis of YedY, a mononuclear mo enzyme, Proc. Natl. Acad. Sci. U. S. A., 112, 14506, 10.1073/pnas.1516869112 Guo, 2004, Fourier transform large-amplitude alternating current cyclic voltammetry of surface-bound azurin, Anal. Chem., 76, 166, 10.1021/ac034901c Adamson, 2017, Probing biological redox chemistry with large amplitude Fourier transformed ac voltammetry, Chem. Commun., 53, 9519, 10.1039/C7CC03870D Zouraris, 2018, Direct electron transfer of lytic polysaccharide monooxygenases (LPMOs) and determination of their formal potentials by large amplitude Fourier transform alternating current cyclic voltammetry, Bioelectrochem, 124, 149, 10.1016/j.bioelechem.2018.07.009 Anastassiou, 2005, Determination of kinetic and thermodynamic parameters of surface confined species through ac voltammetry and a nonstationary signal processing technique: the Hilbert transform, Anal. Chem., 77, 3357, 10.1021/ac048137l Jeuken, 2002, Insights into gated electron-transfer kinetics at the electrode-protein interface: a square wave voltammetry study of the blue copper protein azurin, J. Phys. Chem. B, 106, 2304, 10.1021/jp0134291 Smith, 1990, Redox properties of several bacterial ferredoxins using square wave voltammetry, J. Biol. Chem., 265, 1437, 10.1016/S0021-9258(18)77311-0 Bond, 2005, Changing the look of voltammetry, Anal. Chem., 77, 186A, 10.1021/ac053370k Zouraris, 2019, Large amplitude ac voltammetry: chief observables for a reversible reaction of free electroactive species, J. Electroanal. Chem., 847, 113245, 10.1016/j.jelechem.2019.113245 Moya, 2015, Numerical simulation of linear sweep and large amplitude ac voltammetries of ion-exchange membrane systems, J. Membr. Sci., 474, 215, 10.1016/j.memsci.2014.10.006 Tan, 2017, Comparison of fast electron transfer kinetics at platinum, gold, glassy carbon and diamond electrodes using Fourier-transformed ac voltammetry and scanning electrochemical microscopy, Phys. Chem. Chem. Phys., 19, 8726, 10.1039/C7CP00968B Tan, 2017, Probing electrode heterogeneity using Fourier-transformed alternating current voltammetry: protocol development, Electrochim. Acta, 240, 514, 10.1016/j.electacta.2017.04.053 Mooring, 1977, A.c. voltammetry at large amplitudes. A simplified theoretical approach, J. Electroanal. Chem., 78, 219, 10.1016/S0022-0728(77)80117-4 Bond, 1978, A.c. cyclic voltammetry: a digital simulation study of the slow scan limit condition for a reversible electrode process, J. Electroanal. Chem., 90, 381, 10.1016/S0022-0728(78)80073-4 Engblom, 2000, Must ac voltammetry employ small signals?, J. Electroanal. Chem., 480, 120, 10.1016/S0022-0728(99)00431-3 Gavaghan, 2000, A complete numerical simulation of the techniques of alternative current linear sweep and cyclic voltammetry: analysis of a reversible process by conventional and fast Fourier transform methods, J. Electroanal. Chem., 480, 133, 10.1016/S0022-0728(99)00476-3 Bell, 2011, Large-amplitude ac voltammetry: theory for reversible redox reactions in the “slow scan limit approximation”, Electrochim. Acta, 56, 6131, 10.1016/j.electacta.2011.04.064 Honeychurch, 2002, Numerical simulation of Fourier transform alternating current linear sweep voltammetry of surface bound molecules, J. Electroanal. Chem., 529, 3, 10.1016/S0022-0728(02)00907-5 Bell, 2011, Theory of high frequency, large-amplitude sinusoidal voltammetry for ideal surface-confined redox species, Electrochim. Acta, 56, 7569, 10.1016/j.electacta.2011.06.085 Bell, 2012, Theoretical treatment of high-frequency, large-amplitude ac voltammetry applied to ideal surface-confined redox systems, Electrochim. Acta, 64, 71, 10.1016/j.electacta.2011.12.088 Fleming, 2007, Detailed analysis of the electron-transfer properties of azurin adsorbed on graphite electrodes using dc and large-amplitude Fourier transformed ac voltammetry, Anal. Chem., 79, 6515, 10.1021/ac070448j Stevenson, 2012, Theoretical analysis of the two-electron transfer reaction and experimental studies with surface-confined cytochrome c peroxidase using large-amplitude Fourier transformed ac voltammetry, Langmuir, 28, 9864, 10.1021/la205037e Zhang, 2007, Theoretical studies of large amplitude alternating current voltammetry for a reversible surface-confined electron transfer process coupled to a pseudo first-order electrocatalytic process, J. Electroanal. Chem., 600, 23, 10.1016/j.jelechem.2006.02.023 Zouraris, 2020, FTacV study of electroactive immobilized enzyme/free substrate reactions: enzymatic catalysis of epinephrine by a multicopper oxidase from Thermothelomyces thermophila, Bioelectrochemistry, 134, 107538, 10.1016/j.bioelechem.2020.107538 Savéant, 2006 Léger, 2002, Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in [NiFe]-hydrogenase and other enzymes, J. Phys. Chem. B, 106, 13058, 10.1021/jp0265687 Robinson, 2019, Models and their limitations in the voltammetric parameterization of the six-electron surface-confined reduction of [PMo12O40]−3 at glassy carbon and boron-doped diamond electrodes, ChemElectrochem, 6, 5499, 10.1002/celc.201901415 Rahman, 2020, Thermodynamics, electrode kinetics, and mechanistic nuances associated with the voltammetric reduction of dissolved [n-Bu4N]4[PW11O39{Sn(C6H4)C≡C(C6H4)(N3C4H10)}] and a surface-confined diazonium derivative, ACS Appl. Energy Mater., 3, 3991, 10.1021/acsaem.0c00405 Morris, 2015, Theoretical analysis of the relative significance of thermodynamic and kinetic dispersion in the dc and ac voltammetry of surface-confined molecules, Langmuir, 31, 4996, 10.1021/la5042635 Stevenson, 2013, Access to enhanced differences in Marcus-Hush and Butler-Volmer electron transfer theories by systematic analysis of higher order AC harmonics, PCCP, 15, 2210, 10.1039/C2CP43193A