Determination of kinetic and thermodynamic parameters from large amplitude Fourier transform ac voltammetry of immobilized electroactive species
Tài liệu tham khảo
Guo, 2015, Fourier transformed large amplitude alternating current voltammetry: principles and applications, Rev. Polarogr., 61, 21, 10.5189/revpolarography.61.21
Zouraris, 2017, Kinetic and amperometric study of the MtPerII peroxidase isolated from the ascomycete fungus Myceliophthora thermophila, Bioelectrochem, 118, 19, 10.1016/j.bioelechem.2017.06.011
Adamson, 2015, Electrochemical evidence that pyranopterin redox chemistry controls the catalysis of YedY, a mononuclear mo enzyme, Proc. Natl. Acad. Sci. U. S. A., 112, 14506, 10.1073/pnas.1516869112
Guo, 2004, Fourier transform large-amplitude alternating current cyclic voltammetry of surface-bound azurin, Anal. Chem., 76, 166, 10.1021/ac034901c
Adamson, 2017, Probing biological redox chemistry with large amplitude Fourier transformed ac voltammetry, Chem. Commun., 53, 9519, 10.1039/C7CC03870D
Zouraris, 2018, Direct electron transfer of lytic polysaccharide monooxygenases (LPMOs) and determination of their formal potentials by large amplitude Fourier transform alternating current cyclic voltammetry, Bioelectrochem, 124, 149, 10.1016/j.bioelechem.2018.07.009
Anastassiou, 2005, Determination of kinetic and thermodynamic parameters of surface confined species through ac voltammetry and a nonstationary signal processing technique: the Hilbert transform, Anal. Chem., 77, 3357, 10.1021/ac048137l
Jeuken, 2002, Insights into gated electron-transfer kinetics at the electrode-protein interface: a square wave voltammetry study of the blue copper protein azurin, J. Phys. Chem. B, 106, 2304, 10.1021/jp0134291
Smith, 1990, Redox properties of several bacterial ferredoxins using square wave voltammetry, J. Biol. Chem., 265, 1437, 10.1016/S0021-9258(18)77311-0
Bond, 2005, Changing the look of voltammetry, Anal. Chem., 77, 186A, 10.1021/ac053370k
Zouraris, 2019, Large amplitude ac voltammetry: chief observables for a reversible reaction of free electroactive species, J. Electroanal. Chem., 847, 113245, 10.1016/j.jelechem.2019.113245
Moya, 2015, Numerical simulation of linear sweep and large amplitude ac voltammetries of ion-exchange membrane systems, J. Membr. Sci., 474, 215, 10.1016/j.memsci.2014.10.006
Tan, 2017, Comparison of fast electron transfer kinetics at platinum, gold, glassy carbon and diamond electrodes using Fourier-transformed ac voltammetry and scanning electrochemical microscopy, Phys. Chem. Chem. Phys., 19, 8726, 10.1039/C7CP00968B
Tan, 2017, Probing electrode heterogeneity using Fourier-transformed alternating current voltammetry: protocol development, Electrochim. Acta, 240, 514, 10.1016/j.electacta.2017.04.053
Mooring, 1977, A.c. voltammetry at large amplitudes. A simplified theoretical approach, J. Electroanal. Chem., 78, 219, 10.1016/S0022-0728(77)80117-4
Bond, 1978, A.c. cyclic voltammetry: a digital simulation study of the slow scan limit condition for a reversible electrode process, J. Electroanal. Chem., 90, 381, 10.1016/S0022-0728(78)80073-4
Engblom, 2000, Must ac voltammetry employ small signals?, J. Electroanal. Chem., 480, 120, 10.1016/S0022-0728(99)00431-3
Gavaghan, 2000, A complete numerical simulation of the techniques of alternative current linear sweep and cyclic voltammetry: analysis of a reversible process by conventional and fast Fourier transform methods, J. Electroanal. Chem., 480, 133, 10.1016/S0022-0728(99)00476-3
Bell, 2011, Large-amplitude ac voltammetry: theory for reversible redox reactions in the “slow scan limit approximation”, Electrochim. Acta, 56, 6131, 10.1016/j.electacta.2011.04.064
Honeychurch, 2002, Numerical simulation of Fourier transform alternating current linear sweep voltammetry of surface bound molecules, J. Electroanal. Chem., 529, 3, 10.1016/S0022-0728(02)00907-5
Bell, 2011, Theory of high frequency, large-amplitude sinusoidal voltammetry for ideal surface-confined redox species, Electrochim. Acta, 56, 7569, 10.1016/j.electacta.2011.06.085
Bell, 2012, Theoretical treatment of high-frequency, large-amplitude ac voltammetry applied to ideal surface-confined redox systems, Electrochim. Acta, 64, 71, 10.1016/j.electacta.2011.12.088
Fleming, 2007, Detailed analysis of the electron-transfer properties of azurin adsorbed on graphite electrodes using dc and large-amplitude Fourier transformed ac voltammetry, Anal. Chem., 79, 6515, 10.1021/ac070448j
Stevenson, 2012, Theoretical analysis of the two-electron transfer reaction and experimental studies with surface-confined cytochrome c peroxidase using large-amplitude Fourier transformed ac voltammetry, Langmuir, 28, 9864, 10.1021/la205037e
Zhang, 2007, Theoretical studies of large amplitude alternating current voltammetry for a reversible surface-confined electron transfer process coupled to a pseudo first-order electrocatalytic process, J. Electroanal. Chem., 600, 23, 10.1016/j.jelechem.2006.02.023
Zouraris, 2020, FTacV study of electroactive immobilized enzyme/free substrate reactions: enzymatic catalysis of epinephrine by a multicopper oxidase from Thermothelomyces thermophila, Bioelectrochemistry, 134, 107538, 10.1016/j.bioelechem.2020.107538
Savéant, 2006
Léger, 2002, Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in [NiFe]-hydrogenase and other enzymes, J. Phys. Chem. B, 106, 13058, 10.1021/jp0265687
Robinson, 2019, Models and their limitations in the voltammetric parameterization of the six-electron surface-confined reduction of [PMo12O40]−3 at glassy carbon and boron-doped diamond electrodes, ChemElectrochem, 6, 5499, 10.1002/celc.201901415
Rahman, 2020, Thermodynamics, electrode kinetics, and mechanistic nuances associated with the voltammetric reduction of dissolved [n-Bu4N]4[PW11O39{Sn(C6H4)C≡C(C6H4)(N3C4H10)}] and a surface-confined diazonium derivative, ACS Appl. Energy Mater., 3, 3991, 10.1021/acsaem.0c00405
Morris, 2015, Theoretical analysis of the relative significance of thermodynamic and kinetic dispersion in the dc and ac voltammetry of surface-confined molecules, Langmuir, 31, 4996, 10.1021/la5042635
Stevenson, 2013, Access to enhanced differences in Marcus-Hush and Butler-Volmer electron transfer theories by systematic analysis of higher order AC harmonics, PCCP, 15, 2210, 10.1039/C2CP43193A