Freundlich and Langmuir Isotherms as Models for the Adsorption of Toxicants on Activated Charcoal

Journal of Pharmaceutical Sciences - Tập 76 - Trang 319-327 - 1987
Peter K. Gessner1, Mazen M. Hasan1
1Department of Pharmacology and Therapeutics, State University of New York at Buffalo, Buffalo, NY 14214

Tài liệu tham khảo

Cooney, 1980, 24 Levy, 1982, N. Engl. J. Med., 307, 676, 10.1056/NEJM198209093071109 Israili, 1984, Drug Metab. Rev., 15, 1123, 10.3109/03602538409033559 Spyker, 1985, Arch. Int. Med., 145, 43, 10.1001/archinte.1985.00360010063005 Kulig, 1985, Ann. Emerg. Med., 14, 562, 10.1016/S0196-0644(85)80780-0 Park, 1986, Arch. Intern. Med., 146, 969, 10.1001/archinte.1986.00360170207027 Berg, 1982, N. Eng. J. Med., 307, 642, 10.1056/NEJM198209093071102 Lake, 1984, Pharmacotherapy, 4, 161, 10.1002/j.1875-9114.1984.tb03343.x Lalonde, 1985, Clin. Pharmacol. Thera., 37, 367, 10.1038/clpt.1985.55 Hillman, 1985, Br. Med. J., 297, 1472, 10.1136/bmj.291.6507.1472 Laufen, 1986, Int. J. Clin. Pharmacol., 24, 48 Winchester, 1977, Trans. Am. Soc. Artif. Intern. Organs, 23, 762, 10.1097/00002480-197700230-00204 Tsuchiya, 1972, J. Pharm. Sci., 61, 587 Bainbridge, 1977, J. Pharm. Sci., 66, 480, 10.1002/jps.2600660405 Hincal, 1979, J. Pharm. Sci., 68, 472, 10.1002/jps.2600680421 Van de Graaf, 1982, J. Pharmacol. Exp. Ther., 221, 656 Javaid, 1983, J. Pharm. Sci., 72, 82, 10.1002/jps.2600720120 Neuvonen, 1983, Clin. Tox., 21, 333 Kannisto, 1984, J. Pharm. Sci., 73, 253, 10.1002/jps.2600730228 Lehmann, 1984, Clin. Tox., 22, 331 Dedrick, 1967, Trans. Amer. Soc. Artif. Int. Organs, 13, 236 Manes, 1974, Clin. Tox., 7, 355, 10.3109/15563657408987998 Cooney, 1977, Clin. Tox., 11, 387, 10.3109/15563657708988201 Ganjian, 1980, J. Pharm. Sci., 69, 352, 10.1002/jps.2600690329 Skalsky, 1978, Artif. Org., 3, 258, 10.1111/j.1525-1594.1979.tb01060.x Freundlich, 1922 Kipling, 1955, 24 Traditionally, the exponent P has been written as 1/n (to underscore that its value is always less than unity); it is a usage which complicates matters unnecessarily. Goldstein, 1949, Pharm. Rev., 1, 102 Henry, 1922, Phil. Mag., S6, 44 Langmuir, 1918, J. Am. Chem. Soc., 1361, 10.1021/ja02242a004 Andersen, 1946, Acta Pharmacol., 2, 69, 10.1111/j.1600-0773.1946.tb02599.x Andersen, 1947, Acta Pharmacol., 3, 199, 10.1111/j.1600-0773.1947.tb02649.x Andersen, 1948, Acta Pharmacol., 4, 275, 10.1111/j.1600-0773.1948.tb03349.x Holt, 1963, J. Pediat., 63, 306, 10.1016/S0022-3476(63)80344-3 Gosselin, 1966, Clin. Pharmacol. Therap., 7, 279, 10.1002/cpt196673279 Mann, 1970, Pediatr. Clin. N. A., 17, 617, 10.1016/S0031-3955(16)32455-5 Cooney, 1980, 32 Sorby, 1960 Sorby, 1961, J. Pharm. Sci., 50, 355, 10.1002/jps.2600500419 Sorby, 1965, J. Pharm. Sci., 54, 677, 10.1002/jps.2600540504 Sorby, 1966, J. Pharm. Sci., 55, 785, 10.1002/jps.2600550807 Snedecor, 1957, 199 Marquardt, 1964 Marquardt, 1963, J. Soc. Ind. Appl. Math., 11, 431, 10.1137/0111030 Cabana, 1970, J. Pharmacol. Exp. Ther., 174, 260 Atkins, 1983, Biochim. Biophys. Acta, 732, 455, 10.1016/0005-2736(83)90062-7 Matyska, 1985, Biochem. J., 271, 171, 10.1042/bj2310171 Tommasini, 1985, Can. J. Biochem. Cell Biol., 63, 225, 10.1139/o85-032 Acton, 1959, 129 Since eq 2 is that of a logarithmic relationship, analyses of variance were performed using logarithmic transforms of the values of x/m and C in Tables I and II. The parameter K is a logarithmic parameter in eq 2; its 95% confidence limits are, accordingly, geometrically symmetrical. Draper, 1981, 484 Endrenyi, 1972, 219 Specifically: logx/m=log[−(k1q+mk1k2+1)+(k1q+mk1k2+1)2−4k12k2mq−2k1m] Draper, 1981, 141 Jeng, 1985, J. Pharm. Sci., 74, 1053, 10.1002/jps.2600741006 Godfrey, 1985, N. Eng. J. Med., 313, 1629, 10.1056/NEJM198512263132604 Monot, 1983, J. Pharm. Sci., 72, 35, 10.1002/jps.2600720109 Riggs, 1963, 51 Wilkinson, 1961, Biochem. J., 80, 324, 10.1042/bj0800324 The maximum likelihood solution of eq 6 is that which gives the smallest value for the sum-of-squares of deviations of „observed” values of C/(x/m) from those predicted. However, log x/m rather than C/x(/m) is the true dependent variable of the Langmuir relationship. Accordingly, to allow direct comparison with the sum-of-squares obtained for the solution of the logarithmic form of eq 3 and the transform of eq 4,50 the sum-of-squares of log x/m for the parameters generated by the solution of eq 6 was calculated by insertion of these parameters into the logarithmic form of eq 3. Dowd, 1965, J. Biol. Chem., 240, 863, 10.1016/S0021-9258(17)45254-9 Atkins, 1975, Biochem. J., 149, 775, 10.1042/bj1490775 Scatchard, 1949, Ann. N.Y. Acad. Sci., 51, 660, 10.1111/j.1749-6632.1949.tb27297.x Riggs, 1963, 57 Scholtan, 1978, Arzneim.-Forsch., 28, 1037