A 139 nW, 67 $$\hbox {ppm}/^\circ \hbox {C}$$ BJT-CMOS-Based Voltage Reference Circuit

Circuits, Systems, and Signal Processing - Tập 36 - Trang 5062-5078 - 2017
Shailesh Singh Chouhan1, Kari Halonen1
1Department of Micro- and Nanosciences, School of Electrical Engineering, Aalto University, Espoo, Finland

Tóm tắt

In this work, a low-power voltage reference circuit has been developed using the principle that a thermal compensation of the threshold voltage of a diode-connected nMOSFET can be obtained by using the PTAT current. The proposed circuit is designed using $$0.18\,\upmu \hbox {m}$$ standard CMOS technology for the industrial temperature range of $$-40$$ to $$+85\,^\circ \hbox {C}$$ . The measurements have been done over a set of 10 samples in the given temperature range. The measured results show that the proposed circuit is capable of working in the supply voltage range of 1.2–1.8 V with the mean line sensitivity and total current consumption of 0.64%/V and $$115.4\,\hbox {nA}$$ , respectively, at $$22.5\,^\circ \hbox {C}$$ . The measured mean reference voltage obtained from the circuit is 435 mV with the mean temperature coefficient of $$67\,\hbox {ppm}{/}^\circ \hbox {C}$$ . The measured noise density at $$22.5\,^\circ \hbox {C}$$ without any filtering capacitor is $$42\,\upmu \hbox {V}{/}\sqrt{\text {Hz}}$$ at 100 Hz. The active area of the circuit is $$0.01008\,\hbox {mm}^2$$ .

Tài liệu tham khảo

D. Colombo, F. Werle, G. Wirth, S. Bampi, A CMOS 25.3 \(\text{ppm}/^\circ \text{ C }\) bandgap voltage reference using self-cascode composite transistor, in IEEE 3rd Latin American Symposium on Circuits and Systems (LASCAS), pp. 1–4, Playa del Carmen (2012)

Q. Duan, J. Roh, A 1.2-V 4.2ppm /\({}^\circ \text{ C }\) high-order curvature-compensated CMOS bandgap reference. IEEE Trans. Circuits Syst. I Regular Papers 62(3), 662–670 (2015)

J. Gronicz, M. Pulkkinen, M. Yceta, K. Halonen, A \(2\mu \text{ A }\) temperature compensated MEMS-based real time clock with \(\pm 4\) ppm timekeeping accuracy, in IEEE International Symposium on Circuits and Systems (ISCAS), pp. 514–517, Melbourne VIC (2014)

S. Jamali-Zavareh, J. Salomaa, M. Pulkkinen, S.S. Chouhan, K. Halonen, A \(1.3-\mu \text{ W }\) 12-bit incremental \({\varDelta \varSigma }\) ADC for energy harvesting sensor applications, in IEEE Nordic Circuits and Systems Conference (NORCAS), pp. 1–4, Copenhagen (2016)

L. Ka Nang, P.K.T. Mok, A CMOS voltage reference based on weighted \({\varDelta }\text{ V }_{GS}\) for CMOS low-dropout linear regulators. IEEE J. Solid-State Circuits 38(1), 146–150 (2003)

L. Lian-xi, M. Jun-Chao, M. Ning, T. Wei, Z. Zhang-ming, Y. Yin-tang, An ultra-low-power integrated RF energy harvesting system in 65-nm CMOS process. Circuit Syst. Signal Process. 35(2), 421–441 (2016)

K.L. Nang, P.K.T. Mok, A sub-1-V \(15-\text{ ppm }/^\circ \text{ C }\) CMOS bandgap voltage reference without requiring low threshold voltage device. IEEE J. Solid-State Circuits 37(4), 526–530 (2002)

Temperature range summary, Maxim integrated. https://www.maximintegrated.com/en/markets/military-aerospace/temperature-range-summary.html

K. Ueno, T. Hirose, T. Asai, Y. Amemiya, A 300 nW, 15 \(\text{ ppm }/{}^\circ \text{ C }\), 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs. IEEE J. Solid-State Circuits 44(7), 2047–2054 (2009)

M. Xin, M. Ying-qian, Z. Ze-kun, B. Zhang, Lu Yang, A 1.3 \(\text{ ppm }/{}^\circ \text{ C }\) BiCMOS bandgap voltage reference using piecewise-exponential compensation technique, Analog Integr. Circuits. Signal Process. 66(2), 171176 (2011)

B. Yousefzadeh, S.H. Shalmany, K.A.A. Makinwa, A BJT-Based Temperature-to-Digital Converter With 60 mK (\(3\sigma \)) Inaccuracy From \(-55^\circ \text{ C }\) to +125 \({}^\circ \text{ C }\) in 0.16 \(\mu \text{ m }\) CMOS. IEEE J. Solid-State Circuits 52(4), 1044–1052 (2017)