Design and implementation of all MOS micro-power voltage reference circuit

Analog Integrated Circuits and Signal Processing - Tập 80 Số 3 - Trang 399-406 - 2014
Chouhan, Shailesh Singh1, Halonen, Kari1
1Department of Micro and Nano Sciences, Aalto Univeristy, Espoo, Finland

Tóm tắt

In this work we are proposing the all MOST based reference voltage generating circuit, which utilizes the classical principle of addition of two voltages with opposite temperature coefficients. The targeted application of the proposed circuit is a low-dropout regulator which is used in a RF energy harvesting system. The proposed voltage reference circuit is implemented using a standard 0.18 μm CMOS technology. It generates the average reference voltage of 543.658 mV with an average temperature coefficient of 17.43 ppm/°C in the temperature range of −40 to +85 °C, for the operating supply voltage ranging from 1.25 to 2 V. The maximum power consumption of the proposed architecture is ≈1.5 μW, including power dissipation in bias circuitry and the reference voltage generating core at 2 V supply voltage. The averaged measured line regulation is 1.642 mV/V. The measured power-supply rejection ratio without any filtering capacitor at 100 Hz and 1 MHz are −62.24 and −18.94 dB, respectively. Additionally, the measured noise density without any filtering capacitor at 10 Hz and 100 KHz is 20.54 and $$0.30\,\upmu \hbox {V}/\sqrt{\hbox{Hz}}$$ , respectively. The proposed circuit has silicon area of ≈0.007 mm2.

Tài liệu tham khảo

citation_journal_title=IEEE Transactions on Microwave Theory and Techniques; citation_title=Ambient RF Energy Harvesting in Urban and Semi-Urban Environments; citation_author=M Pinuela, P Mitcheson, S Lucyszyn; citation_volume=61; citation_issue=7; citation_publication_date=2013; citation_pages=2715; citation_doi=10.1109/TMTT.2013.2262687; citation_id=CR1 citation_journal_title=IEEE Transactions on Consumer Electronics; citation_title=RF energy harvesting system and circuits for charging of mobile devices; citation_author=H Jabbar, YS Song, TT Jeong; citation_volume=56; citation_issue=1; citation_publication_date=2010; citation_pages=247; citation_doi=10.1109/TCE.2010.5439152; citation_id=CR2 citation_journal_title=IEEE Transactions on Biomedical Circuits and Systems; citation_title=An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications; citation_author=X Zhang, H Jiang, L Zhang, C Zhang, Z Wang, X Chen; citation_volume=4; citation_issue=1; citation_publication_date=2010; citation_pages=11; citation_doi=10.1109/TBCAS.2009.2031627; citation_id=CR3 citation_journal_title=IEEE Microwave and Wireless Components Letters; citation_title=An UHF RFID Energy-Harvesting System Enhanced by a DC-DC Charge Pump in Silicon-on-Insulator Technology; citation_author=D Donno, L Catarinucci, L Tarricone; citation_volume=23; citation_issue=6; citation_publication_date=2013; citation_pages=315; citation_doi=10.1109/LMWC.2013.2258002; citation_id=CR4 citation_journal_title=IEEE Journal of Solid-State Circuits; citation_title=A low-voltage, low quiescent current, low drop-out regulator; citation_author=G Rincon-Mora, P Allen; citation_volume=33; citation_issue=1; citation_publication_date=1998; citation_pages=36; citation_doi=10.1109/4.654935; citation_id=CR5 citation_journal_title=IEEE Transactions on Very Large Scale Integration (VLSI) Systems; citation_title=A Sub-1 V, 26 muW Low-Output-Impedance CMOS Bandgap Reference With a Low Dropout or Source Follower Mode; citation_author=DCW Ng, D Kwong, N Wong; citation_volume=19; citation_issue=7; citation_publication_date=2011; citation_pages=1305; citation_doi=10.1109/TVLSI.2010.2046658; citation_id=CR6 James, T., Lee, Y. J., Kim, Y. B., & Wilsch, H. (2003). Implementation of a 1 volt supply voltage CMOS subbandgap reference circuit. In IEEE international [systems-on-chip] SOC conference 2003 proceedings, pp. 323–326. citation_journal_title=IEEE Solid-State Circuits Magazine; citation_title=United States Patent 4,250,445; citation_author=P Brokaw; citation_volume=5; citation_issue=3; citation_publication_date=2013; citation_pages=37-41; citation_doi=10.1109/MSSC.2013.2266074; citation_id=CR8 citation_journal_title=IEEE Journal of Solid-State Circuits; citation_title=A Single-Trim CMOS Bandgap Reference With a 3σ Inaccuracy of ±0.15% From −40°C to 125°C; citation_author=G Ge, C Zhang, G Hoogzaad, KAA Makinwa; citation_volume=46; citation_issue=11; citation_publication_date=2011; citation_pages=2693; citation_doi=10.1109/JSSC.2011.2165235; citation_id=CR9 citation_journal_title=IEEE Journal of Solid-State Circuits; citation_title=A CMOS bandgap reference without resistors; citation_author=A Buck, C McDonald, S Lewis, TR Viswanathan; citation_volume=37; citation_issue=1; citation_publication_date=2002; citation_pages=81; citation_doi=10.1109/4.974548; citation_id=CR10 citation_journal_title=IEEE Journal of Solid-State Circuits; citation_title=1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for Nanowatt CMOS LSIs; citation_author=Y Osaki, T Hirose, N Kuroki, M Numa; citation_volume=48; citation_issue=6; citation_publication_date=2013; citation_pages=1530; citation_doi=10.1109/JSSC.2013.2252523; citation_id=CR11 citation_journal_title=IEEE Journal of Solid-State Circuits; citation_title=A CMOS voltage reference based on weighted ΔVGS for CMOS low-dropout linear regulators; citation_author=KN Leung, P Mok; citation_volume=38; citation_issue=1; citation_publication_date=2003; citation_pages=146; citation_doi=10.1109/JSSC.2002.806265; citation_id=CR12 Toledo, L., Lancioni, W., Petrashin, P., Dualibe, C. & Vazquez, C. (2007). A new CMOS voltage reference scheme based on Vth-difference principle. In IEEE International Symposium on Circuits and Systems, pp. 3840–3843. citation_journal_title=IEEE Journal of Solid-State Circuits; citation_title=CMOS current reference without resistance; citation_author=H Oguey, D Aebischer; citation_volume=32; citation_issue=7; citation_publication_date=1997; citation_pages=1132; citation_doi=10.1109/4.597305; citation_id=CR14 Huang, Z., Luo, Q., & Inoue, Y. (2010). A CMOS Sub-l-V nanopower current and voltage reference with leakage compensation. In IEEE International Symposium on Circuits and Systems, pp. 4069–4072. citation_title=Design of Analog CMOS Integrated Circuits; citation_publication_date=2000; citation_id=CR16; citation_author=B Razavi; citation_publisher=McGraw Hill citation_journal_title=IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications; citation_title=Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits; citation_author=I Filanovsky, A Allam; citation_volume=48; citation_issue=7; citation_publication_date=2001; citation_pages=876; citation_doi=10.1109/81.933328; citation_id=CR17 citation_journal_title=IEEE Transactions on Circuits and Systems II: Express Briefs; citation_title=A 1 μW 600 ppm/°C Current Reference Circuit Consisting of Subthreshold CMOS Circuits; citation_author=K Ueno, T Hirose, T Asai, Y Amemiya; citation_volume=57; citation_issue=9; citation_publication_date=2010; citation_pages=681; citation_doi=10.1109/TCSII.2010.2056051; citation_id=CR18 citation_title=The Art of Analog Layout, 2/e; citation_publication_date=2005; citation_id=CR19; citation_author=A Hastings; citation_publisher=Prentice Hall Abu-Rahma, M.H. (2008). Design of variation-tolerant circuits for nanometer CMOS technology: Circuits and architecture co-design. Ph.D. thesis, University of Waterloo. Pang L.T. (2008) Measurement and analysis of variability in cmos circuits. Ph.D. thesis, Electrical Engineering and Computer Sciences University of California at Berkeley. Arora, N. (2007). MOSFET modeling for VLSI simulation theory and practice. In International series on advances in solid state electronics and technology. Singapore: World Scientific. Zhou, Z.-K., Zhu, P.-S., Shi, Y., Wang, H.-Y., Ma, Y.-Q., Xu, X.-Z., et al. (2012). A CMOS voltage reference based on mutual compensation of Vtn and Vtp. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(6), 341. citation_journal_title=IET Circuits, Devices and Systems; citation_title=Compact, very low voltage, temperature-independent reference circuit; citation_author=PS Crovetti, F Fiori; citation_volume=1; citation_issue=1; citation_publication_date=2007; citation_pages=63; citation_doi=10.1049/iet-cds:20050373; citation_id=CR24 citation_journal_title=Electronics Letters; citation_title=Low-power low-voltage reference using peaking current mirror circuit; citation_author=MH Cheng, ZW Wu; citation_volume=41; citation_issue=10; citation_publication_date=2005; citation_pages=572; citation_doi=10.1049/el:20050316; citation_id=CR25 citation_journal_title=IET Circuits, Devices and Systems; citation_title=Temperature-stable voltage reference based on different threshold voltages of NMOS transistors; citation_author=X Xia, L Xie, W Sun, L Shi; citation_volume=3; citation_issue=5; citation_publication_date=2009; citation_pages=233; citation_doi=10.1049/iet-cds.2008.0292; citation_id=CR26 Lo, T.-Y., Hung, C.-C., & Ismail, M. (2010). CMOS voltage reference based on threshold voltage and thermal voltage. Analog Integrated Circuits and Signal Processing, 62(1), 9.