Yeast

  1097-0061

  0749-503X

  Anh Quốc

Cơ quản chủ quản:  John Wiley and Sons Ltd , WILEY

Lĩnh vực:
Medicine (miscellaneous)BiochemistryBiotechnologyApplied Microbiology and BiotechnologyBioengineeringGenetics

Các bài báo tiêu biểu

Mô-đun dị loại mới cho sự huỷ bỏ gene cổ điển hoặc dựa trên PCR trong <i>Saccharomyces cerevisiae</i>
Tập 10 Số 13 - Trang 1793-1808 - 1994
Achim Wach, Arndt Brachat, Rainer Pöhlmann, Peter Philippsen
Tóm tắt

Chúng tôi đã xây dựng và kiểm nghiệm một mô-đun kháng sinh ưu thế, để lựa chọn các biến đổi gen của S. cerevisiae, hoàn toàn bao gồm DNA dị loại. Mô-đun kanMX này chứa khung đọc mở kanr đã biết của yếu tố di chuyển Tn903 từ E. coli kết hợp với các chuỗi điều khiển phiên mã và dịch mã của gene TEF từ nấm sợi Ashbya gossypii. Mô-đun lai này cho phép lựa chọn hiệu quả các biến đổi gen kháng lại geneticin (G418). Chúng tôi cũng đã xây dựng một mô-đun báo cáo lacZMT trong đó khung đọc mở của gene E. coli lacZ (thiếu 9 mã đầu tiên) được liên kết tại đầu 3′ với đoạn kết thúc S. cerevisiae ADH1. Mô-đun kanMX và mô-đun lacZMT, hoặc cả hai mô-đun cùng nhau, đã được nhân bản vào trung tâm của một chuỗi nhân bản đa dạng mới gồm 18 vị trí hạn chế duy nhất được bao bọc bởi các vị trí Not I. Sử dụng mô-đun kép cho việc xây dựng các sự thay thế trong khung của gene, chỉ cần một thí nghiệm biến đổi để kiểm nghiệm hoạt động của bộ khởi động và tìm kiếm các kiểu hình do việc bất hoạt gene này gây ra. Để cho phép việc sử dụng lặp lại sự lựa chọn G418, một số mô-đun kanMX được viền bằng các nhặp lại trực tiếp dài 470 bp, thúc đẩy việc loại ra in vivo với tần số từ 10–3 đến 10–4. Mô-đun kanMX dài 1,4 kb cũng đã được chứng minh là rất hữu ích cho các sự gián đoạn gene dựa trên PCR. Trong một thí nghiệm mà sự gián đoạn gene đã được thực hiện với các phân tử DNA mang theo các chuỗi kết thúc được thêm vào từ PCR chỉ có 35 baz đôi tương đồng với từng vị trí mục tiêu, tất cả mười hai thuộc địa kháng geneticin được kiểm tra đều mang mô-đun kanMX tích hợp đúng."

#Mô-đun kháng dị loại #huỷ bỏ gene #<i>S. cerevisiae</i> #khung đọc mở #PCR #biến đổi gen #kháng geneticin #lựa chọn G418 #phiên mã #dịch mã #nấm sợi <i>Ashbya gossypii</i> #bất hoạt gene #lặp lại trực tiếp #tích hợp đúng #vị trí hạn chế #<i>in vivo</i>.
Studies on the transformation of intact yeast cells by the LiAc/SS‐DNA/PEG procedure
Tập 11 Số 4 - Trang 355-360 - 1995
R. Daniel Gietz, Robert H. Schiestl, Andrew Willems, Robin A. Woods
Abstract

An improved lithium acetate (LiAc)/single‐stranded DNA (SS‐DNA)/polyethylene glycol (PEG) protocol which yields >1 × 106 transformants/μg plasmid DNA and the original protocol described by Schiestl and Gietz (1989) were used to investigate aspects of the mechanism of LiAc/SS‐DNA/PEG transformation. The highest transformation efficiency was observed when 1 × 108 cells were transformed with 100 ng plasmid DNA in the presence of 50 μg SS carrier DNA. The yield of transformants increased linearly up to 5 μg plasmid per transformation. A 20‐min heat shock at 42°C was necessary for maximal yields. PEG was found to deposit both carrier DNA and plasmid DNA onto cells. SS carrier DNA bound more effectively to the cells and caused tighter binding of 32P‐labelled plasmid DNA than did double‐stranded (DS) carrier. The LiAc/SS‐DNA/PEG transformation method did not result in cell fusion. DS carrier DNA competed with DS vector DNA in the transformation reaction. SS plasmid DNA transformed cells poorly in combination with both SS and DS carrier DNA. The LiAc/SS‐DNA/PEG method was shown to be more effective than other treatments known to make cells transformable. A model for the mechanism of transformation by the LiAc/SS‐DNA/PEG method is discussed.

Yeast/<i>E. coli</i> shuttle vectors with multiple unique restriction sites
Tập 2 Số 3 - Trang 163-167 - 1986
James E. Hill, Alan M. Myers, T J Koerner, A Tzagoloff
Abstract

Two yeast/E. coli shuttle vectors have been constructed. The two vectors, YEp351 and YEp352, have the following properties: (1) they can replicate autonomuosly in Saccharomyces cerevisiae and in E. coli; (2) they contain the β‐lactamase gene and confer ampicillin resistance to E. coli; (3) they contain the entire sequence of pUC18; (4) all ten restriction sites of the multiple cloning region of pUC18 including EcoRI, SacI, KpnI, SmaI, BamH1, XbaI, SbaI, SalI, PstI, SphI and HindIII are unique in YEp352; these sites are also unique in YEp351 except for EcoRI and KpnI, which occur twice; (5) recombinant plasmids with DNA inserts in the multiple cloning region of YEp351 and YEp352 can be recognised by loss of β‐galactosidase function in appropriate E. coli hosts; (6) YEp351 and YEp352 contain the yeast LEU2 and URA3 genes, respectively, allowing for selection of these grown under non‐selective conditions indicative of high plasmid copy number. The above properties make the shuttle vectors suitable for constructions of yeast genomic libraries and for cloning of DNA fragments defined by a large number of different restriction sites.

The two vectors have been further modified by deletion of the sequences necessary for antunomous replication in yeast. The derivative plasmids YIp651 and YIp352 can therefore be used ti integrate specific sequences into yeast chromosomal DNA.

Applications of high efficiency lithium acetate transformation of intact yeast cells using single‐stranded nucleic acids as carrier
Tập 7 Số 3 - Trang 253-263 - 1991
R. Daniel Gietz, Robert H. Schiestl
Abstract

The highly efficient yeast lithium acetate transformation protocol of Schiestl and Gietz (1989) was tested for its applicability to some of the most important need of current yeast molecular biology. The method allows efficient cloning of genes by direct transformation of gene libraries into yeast. When a random gene pool ligation reaction was transformed into yeast, the LEU2, HIS3, URA3, TRP1 and ARG4 genes were found among the primary transformations at a frequency of approximately 0·1%. The RAD4 gene, which is toxic to Escherichia coli, was also identified among the primary transformants of a ligation library at a frequency of 0·18%. Non‐selective transformation using this transformation proctocol was shown to increase the frequency of gene disruption three‐fold. Co‐transformation showed that 30–40% of the transformation‐competent cells take up more than one DNA molecule which can be used to enrich for integration and delection events 30‐ to 60‐fold. Co‐transformation was used in the construction of simultaneous double gene disruptions as well as disrupting both copies of one gene in a diploid which occurred at 2–5% the frequency of the single event.

Sequences important for gene expression in filamentous fungi
Tập 2 Số 4 - Trang 229-236 - 1986
D. J. Ballance
An efficient transformation procedure enabling long‐term storage of competent cells of various yeast genera
Tập 7 Số 7 - Trang 691-692 - 1991
R. Jürgen Dohmen, Alexander W.M. Strasser, C B Höner, Cornelis P. Hollenberg
Yeast <i>Saccharomyces cerevisiae</i> selectable markers in pUC18 polylinkers
Tập 6 Số 5 - Trang 363-366 - 1990
Jeffery S. Jones, Louise Prakash
Abstract

A set of plasmids was constructed that contain the yeast selectable markers HIS3, LEU2, TRP1 or URA3 embedded in the multiple cloning site of pUC18.

Isolation and biochemical characterization of organelles from the yeast, <i>Saccharomyces cerevisiae</i>
Tập 11 Số 6 - Trang 493-536 - 1995
Erwin Zinser, Günther Daum
Genome‐wide identification of fungal GPI proteins
Tập 20 Số 9 - Trang 781-796 - 2003
Uwe Groß, Klaas J. Hellingwerf, Frans M. Klis
Abstract

Glycosylphosphatidylinositol‐modified (GPI) proteins share structural features that allow their identification using a genomic approach. From the known S. cerevisiae and C. albicans GPI proteins, the following consensus sequence for the GPI attachment site and its downstream region was derived: [NSGDAC]–[GASVIETKDLF]–[GASV]–X(4,19)–[FILMVAGPSTCYWN](10)>, where > indicates the C‐terminal end of the protein. This consensus sequence, which recognized known GPI proteins from various fungi, was used to screen the genomes of the yeasts S. cerevisiae, C. albicans, Sz. pombe and the filamentous fungus N. crassa for putative GPI proteins. The subsets of proteins so obtained were further screened for the presence of an N‐terminal signal sequence for the secretion and absence of internal transmembrane domains. In this way, we identified 66 putative GPI proteins in S. cerevisiae. Some of these are known GPI proteins that were not identified by earlier genomic analyses, indicating that this selection procedure renders a more complete image of the S. cerevisiae GPI proteome. Using the same approach, 104 putative GPI proteins were identified in the human pathogen C. albicans. Among these were the proteins Gas/Phr, Ecm33, Crh and Plb, all members of GPI protein families that are also present in S. cerevisiae. In addition, several proteins and protein families with no significant homology to S. cerevisiae proteins were identified, including the cell wall‐associated Als, Csa1/Rbt5, Hwp1/Rbt1 and Hyr1 protein families. In Sz. pombe, which has a low level of (galacto)mannan in the cell wall compared to C. albicans and S. cerevisiae, only 33 GPI candidates were identified and in N. crassa 97. BLAST searches revealed that about half of the putative GPI proteins that were identified in Sz. pombe and N. crassa are homologous to known or putative GPI proteins from other fungi. We conclude that our algorithm is selective and can also be used for GPI protein identification in other fungi. Copyright © 2003 John Wiley & Sons, Ltd.

Characterization of lipid particles of the yeast, <i>Saccharomyces cerevisiae</i>
Tập 10 Số 11 - Trang 1421-1428 - 1994
Regina Leber, Erwin Zinser, Günther Zellnig, Fritz Paltauf, Günther Daum
Abstract

Lipid particles of the yeast, Saccharomyces cerevisiae, were isolated to high purity and their components were analysed. The hydrophobic core of this organelle consists of triacylglycerols and steryl esters, which are almost exclusively located to that compartment. Lipid particles are stabilized by a surface membrane consisting of phospholipids and proteins. Electron microscopy confirmed the purity of the preparations and the proposed structure deduced from biochemical experiments. Major proteins of lipid particles have molecular weights of 72, 52, 43 and 34 kDa, respectively. The 43 kDa protein reacts with an antiserum against human apolipoprotein AII. In lipid particles of the yeast mutant strain S. cerevisiae erg6, which is deficient in sterol Δ24‐methyltransferase, this protein is missing thereby identifying the protein and confirming our previous finding (Zinser et al., 1993) that sterol Δ24‐methylation is associated with lipid particles. A possible involvement of surface proteins of lipid particles in the interaction with other organelles is discussed with respect to sterol translocation in yeast.