World Journal of Microbiology and Biotechnology
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Recombinant expression of a GH12 β-glucanase carrying its own signal peptide from Stachybotrys atra in yeast and filamentous fungi
World Journal of Microbiology and Biotechnology - Tập 32 - Trang 1-5 - 2016
The β-glucanase Cel12A gene from Stachybotrys atra has been cloned and heterologously expressed in Aspergillus nidulans and Saccharomyces cerevisiae. The recombinant strains constructed, contained the exonic sequence of cel12A including its own signal peptide coding sequence. SDS-PAGE and zymography revealed that recombinant Cel12A has a molecular mass of 24 kDa which agrees with that deduced from its amino acid sequence, indicating that it is expressed in the non-glycosylated active form. Recombinant A. nidulans showed about eightfold greater activity yield than S. cerevisiae recombinant strain, namely 0.71 and 0.09 β-glucanase Units/ml of culture, respectively. In both host strains most of the activity was secreted to the extracellular media, evidencing the functionality of Cel12A signal peptide in yeast and fungi. This novel signal peptide might facilitate the expression and efficient secretion of other recombinant proteins difficult to secrete.
Natural nitriles and their metabolism
World Journal of Microbiology and Biotechnology - Tập 6 - Trang 83-108 - 1990
The present work reviews the numerous nitrile compounds that have been isolated from plants and animals. Two kinds of potentially toxic molecules are widespread, namely the cyanogenic glycosides and cyanollpids. Many other aromatic and allphatic nitriles are synthesized to a lesser extent. Different studies on the synthesis and degradation of these cyanogenic compounds are also reviewed to emphasize the potential use of different microorganisms for the detoxification of food and foodstuff.
Sequence analysis of the α-galactosidase MEL gene governing the efficient production of ethanol from raffinose-rich molasses in the yeast Lachancea thermotolerans
World Journal of Microbiology and Biotechnology - - 2007
Contribution of vitamin B12 to biogas upgrading and nutrient removal by different microalgae-based technology
World Journal of Microbiology and Biotechnology - Tập 37 - Trang 1-12 - 2021
The algae-based technology has a positive effect on the treatment of biogas slurry and the purification of biogas, while vitamin B12 (VB12) is one of the important regulatory substances in the algae-based cultivation system. In this study, different concentrations of VB12 were used in three microalgal treatment technologies to assess their effect on simultaneous removal of nutrients from biogas slurry and removal of CO2 from raw biogas. Results showed that Chlorella vulgaris exhibited higher growth rate, mean daily productivity, chlorophyll a content, carbonic anhydrase activity and better photosynthetic properties when co-cultivated with Ganoderma lucidum, rather than when co-cultivated with activated sludge or under mono-cultivation. Maximum mean chemical oxygen demand, total nitrogen, total phosphorus and CO2 removal efficiencies were found to be 84.29 ± 8.28%, 83.27 ± 8.14%, 85.27 ± 8.46% and 65.71 ± 6.35%, respectively when microalgae were co-cultivated with Ganoderma lucidum under 100 ng L−1 of VB12. This study shows the potential of microalgae and fungi co-cultivation supplemented with VB12 for the simultaneous upgradation of biogas production as well as for the purification of biogas slurry.
Inhibitory effect of plantaricin peptides (Pln E/F and J/K) against Escherichia coli
World Journal of Microbiology and Biotechnology - Tập 30 Số 11 - Trang 2829-2837 - 2014
Evaluation of lignocellulosic biomass from coconut palm as substrate for cultivation of Pleurotus sajor-caju (Fr.) Singer
World Journal of Microbiology and Biotechnology - Tập 14 - Trang 879-882 - 1998
The lignocellulosic biomass from coconut palm (Cocos nucifera Linn.) such as bunch waste (spathe+spadices), leafstalk (petiole), leaflets and coir pith (by-product from coir processing industry) were evaluated as substrates for cultivation of oyster mushroom, Pleurotus sajor-caju (Fr.) Singer. A low-cost mushroom shed built exclusively of coconut materials such as coconut wood and plaited coconut leaves inside a coconut plantation was used for spawn run and cropping. Leafstalk and bunch waste were superior to leaflets and coir pith in producing significantly more edible biomass of mushrooms. Biological efficiency of 58.9% was obtained in leafstalk, followed by bunch waste (56.9%), coir pith (39.7%) and leaflets (38.2%). The yield of sporophore was positively related to cellulose content and the cellulose : lignin ratio of the substrates.
Molecular cloning and recombinant expression of a gene encoding a fungal immunomodulatory protein from Ganoderma lucidum in Pichia pastoris
World Journal of Microbiology and Biotechnology - Tập 25 - Trang 383-390 - 2008
The fungal immunomodulatory proteins (FIPs) are a new protein family identified from several edible and medical mushrooms and play an important role in anti-tumor, anti-allergy and immunomodulating activities. A gene encoding the FIP was cloned from the mycelia of Changbai Lingzhi (Ganoderma lucidum) and recombinant expressed in the Pichia pastoris expression system. SDS-PAGE, amino acid composition and circular dichroism analyses of the recombinant FIP (reFIP) indicated that the gene was correctly and successfully expressed. In vitro assays of biological activities revealed that the reFIP exhibited similar immunomodulating capacities as native FIPs. The reFIP significantly stimulated the proliferation of mouse spleen lymphocytes and apparently enhanced the expression level of interleukin-2 released from the mouse splenocytes. In addition, anti-tumor activity assay showed that the reFIP could inhibit the proliferation of human leukemia-NB4 by inducing the cell apoptosis to a degree of about 32.4%. Taken together, the FIP gene from Changbai G.
lucidum has been integrated into the yeast genome and expressed effectively at a high level (about 191.2 mg l−1). The reFIP possessed very similar biological activities to native FIPs, suggesting its potential application as a food supplement or immunomodulating agent in pharmaceuticals and even medical studies.
Rapid visual detection of Vibrio parahaemolyticus in seafood samples by loop-mediated isothermal amplification with hydroxynaphthol blue dye
World Journal of Microbiology and Biotechnology - Tập 36 - Trang 1-10 - 2020
The detection and monitoring of Vibrio parahaemolyticus pathogen in aquatic foods have become essential for preventing outbreaks. In this study, loop-mediated isothermal amplification (LAMP) assay with the azo dye, hydroxynaphthol blue (HNB) was developed targeting species-specific tlh gene. The assay was carried out on 62 seafood samples that included clam and shrimp and compared with conventional LAMP assay performed with the commonly used fluorescent dye, conventional PCR, and real-time PCR (RT-PCR). Of 62 samples studied for tlh gene, 32 (51.61%) gave positive by HNB-LAMP, which comprised 22 (70.96%) clam samples and 10 (32.25%) shrimp samples. The HNB-LAMP assay was found to be highly sensitive, specific, and superior to conventional PCR (p > 0.05). RT-PCR presented higher sensitivity than HNB-LAMP; however, it has the limitation of being cost-intensive and requiring technical expertise to perform. HNB-LAMP is affordable, rapid, simple, and easy to perform, allowing naked eye visualization.
Pervaporation performance of a composite bacterial cellulose membrane: dehydration of binary aqueous–organic mixtures
World Journal of Microbiology and Biotechnology - Tập 22 - Trang 547-552 - 2006
Acetobacter xylinum (Gluconacetobacter xylinus) is a bacterium that produces extracellular cellulose under static culture conditions. The highly reticulated cellulose matrix along with the entrapped cellulose-forming bacteria is commonly referred to as a pellicle. The processed bacterial cellulose membrane/film was modified into a composite bacterial cellulose membrane (CBCM) for pervaporation separation of aqueous–organic mixtures. The CBCM was prepared by coating with alginate or alginate+polyvinylpyrrolidone and cross-linking with glutaraldehyde. The pervaporation performance was determined using aqueous–organic mixtures such as, 1:1 (v/v) water–ethanol, water–isopropanol and water–acetone. The pervaporation performance of the CBCM was more effective for zeotropic mixtures (water–acetone) in comparison to the investigated azeotropic mixtures (water–ethanol and water–isopropanol). The selectivity of CBCM was found to be 4.8, 8.8, 19.8 for water–ethanol, water–isopropanol and water–acetone mixtures, respectively. The permeation flux for the water–acetone mixture was found to be 235 ml/m2/h. The present investigation demonstrated that the CBCM could be employed to concentrate azeotropic as well as zeotrope forming binary mixtures by preferential pervaporation of water, with low energy requirements in contrast to the established method of distillation. In addition, the effects of feed composition, operating temperature, membrane thickness, and method of CBCM preparation on pervaporation performance have been evaluated. Investigations with the CBCM revealed that 94.5% ethanol, 98% acetone and 98.5% isopropanol concentrations could be attained from the initial 50% aqueous mixtures of these chemicals by way of pervaporation. In the case of the isopropanol–water mixture the resolving property of the membrane was more evident as the concentration arrived at was 98.5%, in contrast to other binary mixtures. The surface characteristics of the CBCM were revealed by scanning electron microscopy. In view of its properties the CBCM can be useful for pervaporation separation of these chemicals at moderate temperatures and pressure. The CBCM could be employed in the downstream processing of heat-labile and flavor-imparting volatile molecules in the field of food biotechnology and fabrication of membrane bioreactors for on-line product purification. Further studies are under progress to use the membrane for the immobilization of food processing enzymes.
Biocontrol of Phyllosticta citricarpa by Bacillus spp.: biological and chemical aspects of the microbial interaction
World Journal of Microbiology and Biotechnology - Tập 38 - Trang 1-14 - 2022
Citrus fruits are the most produced fruits in the world, but they are threatened by several pathogens, including the fungus Phyllosticta citricarpa, the causal agent of citrus black spot (CBS). The fungus affects most citrus species and the infection results in economic losses in citrus-producing areas. This disease causes the aesthetic depreciation of fresh fruit, impairing its commercialization. As an alternative to the use of synthetic fungicides to control the pathogen, the biological control, using bacteria of the genus Bacillus, is highlighted. Such microorganisms enable biocontrol by the production of volatile organic compounds (VOC) or non-volatile. Therefore, this work aimed to evaluate the production of VOC by isolates of Bacillus spp. grown in different culture media; to evaluate the effects of these compounds on the evolution of CBS lesions in orange fruits; to study the effects of VOC on resistance induction in orange fruits; to evaluate the effects of VOC on P. citricarpa morphology in CBS lesions, and to identify the produced VOC. Tryptone soya agar (TSA) and tryptone soya broth (TSB) media used to culture the bacterium resulted in up to 73% pathogen inhibition by VOC. Volatile compounds from Bacillus spp. ACB-65 and Bacillus spp. ACB-73 when cultured in TSB culture medium provided 86% inhibition of freckles that evolved to hard spots. The volatile fractions produced by the bacteria were identified as alcohols, ketones, amines, ethers, aldehydes and carboxylic acids that can serve as arsenal against the phytopathogen. The present work demonstrated the potential of VOC produced by Bacillus spp. in the control of P. citricarpa.
Tổng số: 5,241
- 1
- 2
- 3
- 4
- 5
- 6
- 10