Towards industrial biological hydrogen production: a review

G. M. Teke1, B Anye Cho2, C. E. Bosman1, Z. Mapholi1, D. Zhang2, R. W. M. Pott1
1Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
2Department of Chemical Engineering, University of Manchester, Manchester, UK

Tóm tắt

Increased production of renewable energy sources is becoming increasingly needed. Amidst other strategies, one promising technology that could help achieve this goal is biological hydrogen production. This technology uses micro-organisms to convert organic matter into hydrogen gas, a clean and versatile fuel that can be used in a wide range of applications. While biohydrogen production is in its early stages, several challenges must be addressed for biological hydrogen production to become a viable commercial solution. From an experimental perspective, the need to improve the efficiency of hydrogen production, the optimization strategy of the microbial consortia, and the reduction in costs associated with the process is still required. From a scale-up perspective, novel strategies (such as modelling and experimental validation) need to be discussed to facilitate this hydrogen production process. Hence, this review considers hydrogen production, not within the framework of a particular production method or technique, but rather outlines the work (bioreactor modes and configurations, modelling, and techno-economic and life cycle assessment) that has been done in the field as a whole. This type of analysis allows for the abstraction of the biohydrogen production technology industrially, giving insights into novel applications, cross-pollination of separate lines of inquiry, and giving a reference point for researchers and industrial developers in the field of biohydrogen production.

Tài liệu tham khảo

Adessi A, Torzillo G, Baccetti E, De Philippis R (2012) Sustained outdoor H2 production with Rhodopseudomonas palustris cultures in a 50 L tubular photobioreactor. Int J Hydrogen Energy 37:8840–8849. https://doi.org/10.1016/j.ijhydene.2012.01.081 Aghbashlo M, Hosseinpour S, Tabatabaei M et al (2016a) Multi-objective exergetic optimization of continuous photo-biohydrogen production process using a novel hybrid fuzzy clustering-ranking approach coupled with radial basis function (RBF) neural network. Int J Hydrogen Energy 41:18418–18430. https://doi.org/10.1016/j.ijhydene.2016.08.123 Aghbashlo M, Hosseinpour S, Tabatabaei M et al (2016b) An exergetically-sustainable operational condition of a photo-biohydrogen production system optimized using conventional and innovative fuzzy techniques. Renew Energy 94:605–618. https://doi.org/10.1016/j.renene.2016.03.061 Akhbari A, Ibrahim S, Ahmad MS (2023) Feasibility of semi-pilot scale up-flow anaerobic sludge blanket fixed-film reactor for fermentative bio-hydrogen production from palm oil mill effluent. Renew Energy 212:612–620. https://doi.org/10.1016/j.renene.2023.05.091 Akhlaghi N, Najafpour-Darzi G (2020) A comprehensive review on biological hydrogen production. Int J Hydrogen Energy 45:22492–22512. https://doi.org/10.1016/j.ijhydene.2020.06.182 Albanez R, Lovato G, Zaiat M et al (2016) Optimization, metabolic pathways modeling and scale-up estimative of an AnSBBR applied to biohydrogen production by co-digestion of vinasse and molasses. Int J Hydrogen Energy 41:20473–20484. https://doi.org/10.1016/j.ijhydene.2016.08.145 Amos W.A (2004) Updated Cost analysis of photobiological hydrogen production from Chlamydomonas reinhardtii green algae: milestone completion OSTI.GOV. https://www.osti.gov/biblio/15006929. Accessed 5 Jun 2023 Ananthi V, Ramesh U, Balaji P et al (2022) A review on the impact of various factors on biohydrogen production. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.08.046 Andreani CL, Bolonhesi IBTM, Fuess LT et al (2022) Compositional variability as a major hindering factor in continuous biohydrogen production from cassava starch wastewater: possible solutions for complex substrates. Int J Energy Res 46:12722–12736. https://doi.org/10.1002/er.8039 Androga DD, Ozgur E, Gunduz U et al (2011) Factors affecting the longterm stability of biomass and hydrogen productivity in outdoor photofermentation. Int J Hydrogen Energy 36:11369–11378. https://doi.org/10.1016/j.ijhydene.2010.12.054 Anwar M, Lou S, Chen L et al (2019) Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. Bioresour Technol 292:121972. https://doi.org/10.1016/j.biortech.2019.121972 Anye Cho B, Carvalho Servia MÁ, del Río Chanona EA et al (2021a) Synergising biomass growth kinetics and transport mechanisms to simulate light/dark cycle effects on photo-production systems. Biotechnol Bioeng 118:1932–1942. https://doi.org/10.1002/bit.27707 Anye Cho B, Grobler E, William McClelland Pott R et al (2023) A CFD coupled photo-bioreactive transport modelling of tubular photobioreactor mixed by peristaltic pump. Chem Eng Sci 270:118525. https://doi.org/10.1016/j.ces.2023.118525 Anye Cho B, Ross BS, du Toit JP et al (2021b) Dynamic modelling of Rhodopseudomonas palustris biohydrogen production: perturbation analysis and photobioreactor upscaling. Int J Hydrogen Energy 46:36696–36708. https://doi.org/10.1016/j.ijhydene.2021.08.162 Anzola-rojas P, Zaiat M, De WH (2016) Improvement of hydrogen production via ethanol-type fermentation in an anaerobic down-flow structured bed reactor. Bioresour Technol 202:42–49. https://doi.org/10.1016/j.biortech.2015.11.084 Argun H, Kargi F (2011) Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview. Int J Hydrogen Energy 36:7443–7459. https://doi.org/10.1016/j.ijhydene.2011.03.116 Argun H, Kargi F, Kapdan IK (2008) Light fermentation of dark fermentation effluent for bio-hydrogen production by different Rhodobacter species at different initial volatile fatty acid (VFA) concentrations. Int J Hydrogen Energy 33:7405–7412. https://doi.org/10.1016/j.ijhydene.2008.09.059 Arimi MM, Knodel J, Kiprop A et al (2015) Strategies for improvement of biohydrogen production from organic-rich wastewater: a review. Biomass Bioenerg 75:101–118. https://doi.org/10.1016/j.biombioe.2015.02.011 Aslam M, Kim J (2019) Investigating membrane fouling associated with GAC fluidization on membrane with effluent from anaerobic fluidized bed bioreactor in domestic wastewater treatment. Environ Sci Pollut Res 26:1170–1180. https://doi.org/10.1007/s11356-017-9815-6 Avcioglu SG, Ozgur E, Eroglu I et al (2011) Biohydrogen production in an outdoor panel photobioreactor on dark fermentation effluent of molasses. Int J Hydrogen Energy 36:11360–11368. https://doi.org/10.1016/j.ijhydene.2010.12.046 Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sustain Energy Rev 31:158–173. https://doi.org/10.1016/j.rser.2013.11.022 Bakonyi P, Buitrón G, Valdez-Vazquez I et al (2017) A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation. Appl Energy 190:813–823. https://doi.org/10.1016/j.apenergy.2016.12.151 Ban S, Lin W, Wu F, Luo J (2018) Algal-bacterial cooperation improves algal photolysis-mediated hydrogen production. Bioresour Technol 251:350–357. https://doi.org/10.1016/j.biortech.2017.12.072 Banu JR, Usman TMM, Kavitha S et al (2021) A critical review on limitations and enhancement strategies associated with biohydrogen production. Int J Hydrogen Energy 46:16565–16590. https://doi.org/10.1016/j.ijhydene.2021.01.075 Basak B, Jeon BH, Kim TH et al (2020) Dark fermentative hydrogen production from pretreated lignocellulosic biomass: effects of inhibitory byproducts and recent trends in mitigation strategies. Renew Sustain Energy Rev 133:110338. https://doi.org/10.1016/j.rser.2020.110338 Basak N, Jana AK, Das D (2016) CFD modeling of hydrodynamics and optimization of photofermentative hydrogen production by Rhodopseudomonas palustris DSM 123 in annular photobioreactor. Int J Hydrogen Energy 41:7301–7317. https://doi.org/10.1016/j.ijhydene.2016.02.126 Basak N, Jana AK, Das D (2022) Photofermentative biohydrogen generation from organic acids by Rhodobacter sphaeroides O.U.001: computational fluid dynamics modeling of hydrodynamics and temperature. Biotechnol Appl Biochem 69:783–797. https://doi.org/10.1002/bab.2151 Basak N, Jana AK, Das D, Saikia D (2014) Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: the present progress and future perspective. Int J Hydrogen Energy 39:6853–6871. https://doi.org/10.1016/j.ijhydene.2014.02.093 Benner P, Meier L, Pfeffer A et al (2022) Lab-scale photobioreactor systems: principles, applications, and scalability. Bioprocess Biosyst Eng 45:791–813. https://doi.org/10.1007/s00449-022-02711-1 Bharathiraja B, Sudharsanaa T, Bharghavi A et al (2016) Biohydrogen and biogas—an overview on feedstocks and enhancement process. Fuel 185:810–828. https://doi.org/10.1016/j.fuel.2016.08.030 Bolatkhan K, Kossalbayev BD, Zayadan BK et al (2019) Hydrogen production from phototrophic microorganisms: reality and perspectives. Int J Hydrogen Energy 44:5799–5811. https://doi.org/10.1016/j.ijhydene.2019.01.092 Boran E, Özgür E, Van Der Burg J et al (2010) Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor. J Clean Prod 18:S29–S35. https://doi.org/10.1016/j.jclepro.2010.03.018 Bosman CE, Pott RWM, Bradshaw SM (2022) A thermosiphon photobioreactor for photofermentative hydrogen production by Rhodopseudomonas palustris. Bioengineering. https://doi.org/10.3390/bioengineering9080344 Bosman CE, Pott RWMC, Bradshaw SM (2023a) Modelling and testing of a light reflector system for the enhancement of biohydrogen production in a thermosiphon photobioreactor. J Biotechnol 361:57–65. https://doi.org/10.1016/j.jbiotec.2022.11.016 Bosman CE, van Wyk P, Pott RWMC, Bradshaw SM (2023) The effect of diurnal light cycles on biohydrogen production in a thermosiphon photobioreactor. AMB Express. https://doi.org/10.1186/s13568-023-01534-x Brindhadevi K, Shanmuganathan R, Pugazhendhi A et al (2021) Biohydrogen production using horizontal and vertical continuous stirred tank reactor—a numerical optimization. Int J Hydrogen Energy 46:11305–11312. https://doi.org/10.1016/j.ijhydene.2020.06.155 Buitrón G, Muñoz-Páez KM, Hernández-Mendoza CE (2019) Biohydrogen production using a granular sludge membrane bioreactor. Fuel 241:954–961. https://doi.org/10.1016/j.fuel.2018.12.104 Buitrón G, Prato-Garcia D, Zhang A (2014) Biohydrogen production from tequila vinasses using a fixed bed reactor. Water Sci Technol 70:1919–1925. https://doi.org/10.2166/wst.2014.433 Burgard AP, Pharkya P, Maranas CD (2003) OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657. https://doi.org/10.1002/bit.10803 Cai J, Wu Q, Wang G, Deng C (2013) Fermentative hydrogen production by a new mesophilic bacterium Clostridium sp. 6A–5 isolated from the sludge of a sugar mill. Renew Energy 59:202–209. https://doi.org/10.1016/j.renene.2013.03.021 Canbay E, Kose A, Oncel SS (2018) Photobiological hydrogen production via immobilization: understanding the nature of the immobilization and investigation on various conventional photobioreactors. Biotech 8:1–8. https://doi.org/10.1007/s13205-018-1266-3 Carrillo-Reyes J, Celis LB, Alatriste-Mondragón F, Razo-Flores E (2014) Decreasing methane production in hydrogenogenic UASB reactors fed with cheese whey. Biomass Bioenerg 63:101–108. https://doi.org/10.1016/j.biombioe.2014.01.050 Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506. https://doi.org/10.1021/bp060065r Castillo-Hernández A, Mar-Alvarez I, Moreno-Andrade I (2015) Start-up and operation of continuous stirred-tank reactor for biohydrogen production from restaurant organic solid waste. Int J Hydrogen Energy 40:17239–17245. https://doi.org/10.1016/j.ijhydene.2015.04.046 Chanquia SN, Vernet G, Kara S (2022) Photobioreactors for cultivation and synthesis : specifications, challenges, and perspectives. Eng Life Sci 22:712–724. https://doi.org/10.1002/elsc.202100070 Chen CC, Lin CY, Chang JS (2001) Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol 57:56–64. https://doi.org/10.1007/s002530100747 Chen CC, Sen B, Chuang YS et al (2012) Effect of effluent recycle ratio in a continuous anaerobic biohydrogen production system. J Clean Prod 32:236–243. https://doi.org/10.1016/j.jclepro.2012.04.006 Chen D, Kuang Y, Wang H et al (2022) Insights into the mechanism of naproxen inhibiting biohydrogen production from sludge dark fermentation. Process Saf Environ Prot 167:390–397. https://doi.org/10.1016/j.psep.2022.09.015 Chen Y, Yin Y, Wang J (2021) Recent advance in inhibition of dark fermentative hydrogen production. Int J Hydrogen Energy 46:5053–5073. https://doi.org/10.1016/j.ijhydene.2020.11.096 Cheng D, Ngo HH, Guo W et al (2022) Enhanced photo-fermentative biohydrogen production from biowastes: an overview. Bioresour Technol 357:127341. https://doi.org/10.1016/j.biortech.2022.127341 Cheng HH, Whang LM, Lin CA et al (2013) Metabolic flux network analysis of fermentative hydrogen production: using Clostridium tyrobutyricum as an example. Bioresour Technol 141:233–239. https://doi.org/10.1016/j.biortech.2013.03.141 Chezeau B, Vial C (2019) Modeling and simulation of the biohydrogen production processes. Biomass, biofuels, biochemicals: biohydrogen, 2nd edn. Elsevier, Amsterdam, pp 445–483 Ciranna A, Ferrari R, Santala V, Karp M (2014) Inhibitory effects of substrate and soluble end products on biohydrogen production of the alkalithermophile Caloramator celer: Kinetic, metabolic and transcription analyses. Int J Hydrogen Energy 39:6391–6401. https://doi.org/10.1016/j.ijhydene.2014.02.047 Collet C, Adler N, Schwitzguébel JP, Péringer P (2004) Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. Int J Hydrogen Energy 29:1479–1485. https://doi.org/10.1016/j.ijhydene.2004.02.009 Cruz-López A, Cruz-Méndez A, Suárez-Vázquez SI et al (2022) Effect of hydraulic retention time on continuous biohydrogen production by the codigestion of brewery wastewater and cheese whey. Bioenergy Res. https://doi.org/10.1007/s12155-022-10399-0 Dange P, Pandit S, Jadhav D et al (2021) Recent developments in microbial electrolysis cell-based biohydrogen production utilizing wastewater as a feedstock. Sustain 13:1–37. https://doi.org/10.3390/su13168796 Dasgupta CN, Jose Gilbert J, Lindblad P et al (2010) Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int J Hydrogen Energy 35:10218–10238. https://doi.org/10.1016/j.ijhydene.2010.06.029 De Vree JH, Bosma R, Janssen M et al (2015) Comparison of four outdoor pilot-scale photobioreactors. Biotechnol Biofuels 8:1–12. https://doi.org/10.1186/s13068-015-0400-2 Del Rio-Chanona EA, Fiorelli F, Zhang D et al (2017) An efficient model construction strategy to simulate microalgal lutein photo-production dynamic process. Biotechnol Bioeng 114:2518–2527. https://doi.org/10.1002/bit.26373/abstract Department of Energy U (2007) Hydrogen , Fuel Cells & Infrastructure Technologies Program Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrogen Energy 40:11094–11111. https://doi.org/10.1016/j.ijhydene.2014.12.035 Dinesh GK, Chauhan R, Chakma S (2018) Influence and strategies for enhanced biohydrogen production from food waste. Renew Sustain Energy Rev 92:807–822. https://doi.org/10.1016/J.RSER.2018.05.009 Ding J, Wang X, Zhou XF et al (2010) CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production. Bioresour Technol 101:7005–7013. https://doi.org/10.1016/j.biortech.2010.03.146 du Toit JP, Pott RWM (2021) Heat-acclimatised strains of Rhodopseudomonas palustris reveal higher temperature optima with concomitantly enhanced biohydrogen production rates. Int J Hydrogen Energy 46:11564–11572. https://doi.org/10.1016/j.ijhydene.2021.01.068 Du Toit JP, Pott RWM (2020) Transparent polyvinyl-alcohol cryogel as immobilisation matrix for continuous biohydrogen production by phototrophic bacteria. Biotechnol Biofuels 13:1–16. https://doi.org/10.1186/s13068-020-01743-7 Eker S, Sarp M (2017) Hydrogen gas production from waste paper by dark fermentation: effects of initial substrate and biomass concentrations. Int J Hydrogen Energy 42:2562–2568. https://doi.org/10.1016/j.ijhydene.2016.04.020 El-Emam RS, Özcan H (2019) Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production. J Clean Prod 220:593–609. https://doi.org/10.1016/J.JCLEPRO.2019.01.309 Eroglu E, Gunduz U, Yucel M, Eroglu I (2010) Photosynthetic bacterial growth and productivity under continuous illumination or diurnal cycles with olive mill wastewater as feedstock. Int J Hydrogen Energy 35:5293–5300. https://doi.org/10.1016/j.ijhydene.2010.03.063 Eroǧlu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403–8413. https://doi.org/10.1016/j.biortech.2011.03.026 Escamilla-Alvarado C, Ponce-Noyola T, Ríos-Leal E, Poggi-Varaldo HM (2013) A multivariable evaluation of biohydrogen production by solid substrate fermentation of organic municipal wastes in semi-continuous and batch operation. Int J Hydrogen Energy 38:12527–12538. https://doi.org/10.1016/j.ijhydene.2013.02.124 Fakhimi N, Tavakoli O (2019) Improving hydrogen production using co-cultivation of bacteria with Chlamydomonas reinhardtii microalga. Mater Sci Energy Technol 2:1–7. https://doi.org/10.1016/j.mset.2018.09.003 Fang HHP, Liu H (2002) Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol 82:87–93. https://doi.org/10.1016/S0960-8524(01)00110-9 Feng S, Ngo HH, Guo W et al (2022) Wastewater-derived biohydrogen: critical analysis of related enzymatic processes at the research and large scales. Sci Total Environ 851:158112. https://doi.org/10.1016/j.scitotenv.2022.158112 Gadow SI, Li YY, Liu Y (2012) Effect of temperature on continuous hydrogen production of cellulose. Int J Hydrogen Energy 37:15465–15472. https://doi.org/10.1016/j.ijhydene.2012.04.128 Gakingo GK, Clarke KG, Louw TM (2020) A numerical investigation of the hydrodynamics and mass transfer in a three-phase gas-liquid-liquid stirred tank reactor. Biochem Eng J 157:107522. https://doi.org/10.1016/j.bej.2020.107522 García CA, Betancourt R, Cardona CA (2017) Stand-alone and biorefinery pathways to produce hydrogen through gasification and dark fermentation using Pinus Patula. J Environ Manage 203:695–703. https://doi.org/10.1016/J.JENVMAN.2016.04.001 Gebicki J, Modigell M, Schumacher M et al (2010) Comparison of two reactor concepts for anoxygenic H2 production by Rhodobacter capsulatus. J Clean Prod 18:S36–S42. https://doi.org/10.1016/j.jclepro.2010.05.023 Genç Ş, Koku H (2023) A preliminary techno-economic analysis of photofermentative hydrogen production. Int J Hydrogen Energy. https://doi.org/10.1016/J.IJHYDENE.2023.03.475 Gerken-Starepravo L, Zhu X, Cho BA et al (2022) An MIQP framework for metabolic pathways optimisation and dynamic flux analysis. Digit Chem Eng 2:100011. https://doi.org/10.1016/j.dche.2022.100011 Ghimire A, Luongo V, Frunzo L et al (2017) Continuous biohydrogen production by thermophilic dark fermentation of cheese whey: Use of buffalo manure as buffering agent. Int J Hydrogen Energy 42:4861–4869. https://doi.org/10.1016/j.ijhydene.2016.11.185 Ghirardi ML, Zhang L, Lee JW et al (2000) Microalgae a source of renewable H2. Trends Biotechnol 18:506–511 Giannelli L, Torzillo G (2012) Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension. Int J Hydrogen Energy 37:16951–16961. https://doi.org/10.1016/j.ijhydene.2012.08.103 Gomes SD, Fuess LT, Mañunga T et al (2016) Bacteriocins of lactic acid bacteria as a hindering factor for biohydrogen production from cassava flour wastewater in a continuous multiple tube reactor. Int J Hydrogen Energy 41:8120–8131. https://doi.org/10.1016/j.ijhydene.2015.11.186 Gonzalez-Garcia RA, Aispuro-Castro R, Salgado-Manjarrez E et al (2017) Metabolic pathway and flux analysis of H2 production by an anaerobic mixed culture. Int J Hydrogen Energy 42:4069–4082. https://doi.org/10.1016/j.ijhydene.2017.01.043 Greenbaum E (1982) Photosynthetic hydrogen and oxygen production: kinetic studies. Science 215(80):291–293. https://doi.org/10.1126/science.215.4530.291 Greenbaum E (1988) Energetic efficiency of hydrogen photoevolution by algal water splitting. Biophys J 54:365–368. https://doi.org/10.1016/S0006-3495(88)82968-0 Gunasekaran M, Merrylin J, Usman TMM et al (2019) Biohydrogen production from industrial wastewater, 2nd edn. Elsevier, Amsterdam Gupta PL, Lee SM, Choi HJ (2015) A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol 31:1409–1417. https://doi.org/10.1007/s11274-015-1892-4 Hallenbeck PC (2009) Fermentative hydrogen production: Principles, progress, and prognosis. Int J Hydrogen Energy 34:7379–7389. https://doi.org/10.1016/j.ijhydene.2008.12.080 Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27:287–297. https://doi.org/10.1016/j.tibtech.2009.02.004 Han W, Hu YY, Li SY et al (2016a) Biohydrogen production from waste bread in a continuous stirred tank reactor: a techno-economic analysis. Bioresour Technol 221:318–323. https://doi.org/10.1016/j.biortech.2016.09.055 Han W, Yan Y, Gu J et al (2016) Techno-economic analysis of a novel bioprocess combining solid state fermentation and dark fermentation for H2 production from food waste. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2016.09.047 Han W, Ye M, Zhu AJ et al (2015) Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production. Bioresour Technol 191:24–29. https://doi.org/10.1016/J.BIORTECH.2015.04.120 Han W, Ye M, Zhu AJ et al (2016c) A combined bioprocess based on solid-state fermentation for dark fermentative hydrogen production from food waste. J Clean Prod 112:3744–3749. https://doi.org/10.1016/J.JCLEPRO.2015.08.072 Hassan GK, Massanet-Nicolau J, Dinsdale R et al (2019) A novel method for increasing biohydrogen production from food waste using electrodialysis. Int J Hydrogen Energy 44:14715–14720. https://doi.org/10.1016/j.ijhydene.2019.04.176 Hitam CNC, Jalil AA (2020) A review on biohydrogen production through photo-fermentation of lignocellulosic biomass. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-01140-y Hosseinzadeh A, Zhou JL, Altaee A, Li D (2022) Machine learning modeling and analysis of biohydrogen production from wastewater by dark fermentation process. Bioresour Technol. https://doi.org/10.1016/j.biortech.2021.126111 Hu C, Choy SY, Giannis A (2018) Evaluation of lighting systems, carbon sources, and bacteria cultures on photofermentative hydrogen production. Appl Biochem Biotechnol 185:257–269. https://doi.org/10.1007/s12010-017-2655-5 Hwang JH, Lee WH (2021) Continuous photosynthetic biohydrogen production from acetate-rich wastewater: Influence of light intensity. Int J Hydrogen Energy 46:21812–21821. https://doi.org/10.1016/j.ijhydene.2021.04.052 IEA (2022) Global Hydrogen Review 2021 Jabbari B, Jalilnejad E, Ghasemzadeh K, Iulianelli A (2021) Modeling and optimization of a membrane gas separation based bioreactor plant for biohydrogen production by CFD–RSM combined method. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2021.102288 Javed MA, Zafar AM, Aly Hassan A et al (2022) The role of oxygen regulation and algal growth parameters in hydrogen production via biophotolysis. J Environ Chem Eng 10:107003. https://doi.org/10.1016/j.jece.2021.107003 Jiang D, Ge X, Zhang T et al (2016) Photo-fermentative hydrogen production from enzymatic hydrolysate of corn stalk pith with a photosynthetic consortium. Int J Hydrogen Energy 41:16778–16785. https://doi.org/10.1016/j.ijhydene.2016.07.129 Kamaraj M, Ramachandran KK, Aravind J (2020) Biohydrogen production from waste materials: benefits and challenges. Int J Environ Sci Technol 17:559–576. https://doi.org/10.1007/s13762-019-02577-z Kantarci N, Borak F, Ulgen KO (2005) Bubble column reactors. Process Biochem 40:2263–2283. https://doi.org/10.1016/j.procbio.2004.10.004 Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582 Kaushal M, Chary KVN, Ahlawat S et al (2018) Understanding regulation in substrate dependent modulation of growth and production of alcohols in Clostridium sporogenes NCIM 2918 through metabolic network reconstruction and flux balance analysis. Bioresour Technol 249:767–776. https://doi.org/10.1016/j.biortech.2017.10.080 Keskin T, Giusti L, Azbar N et al (2018) Microbial cell immobilization in biohydrogen production: a short overview. Int J Hydrogen Energy 41:6941–6948. https://doi.org/10.3389/fenrg.2021.683989 Keskin T, Giusti L, Azbar N (2012) Continuous biohydrogen production in immobilized biofilm system versus suspended cell culture. Int J Hydrogen Energy 37:1418–1424. https://doi.org/10.1016/j.ijhydene.2011.10.013 Keskin T, Nalakath Abubackar H, Arslan K, Azbar N (2019) Biohydrogen Production From Solid Wastes. Elsevier, Amsterdam Khanna N, Das D (2013) Biohydrogen production by dark fermentation. Wiley Interdiscip Rev Energy Environ 2:401–421. https://doi.org/10.1002/wene.15 Kisielewska M, Dębowski M, Zieliński M (2015) Improvement of biohydrogen production using a reduced pressure fermentation. Bioprocess Biosyst Eng 38:1925–1933. https://doi.org/10.1007/s00449-015-1434-3 Koku H, Eroǧlu I, Gündüz U et al (2003) Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy 28:381–388. https://doi.org/10.1016/S0360-3199(02)00080-0 Kongjan P, Inchan S, Chanthong S et al (2018) Hydrogen production from xylose by moderate thermophilic mixed cultures using granules and biofilm up-flow anaerobic reactors. Int J Hydrogen Energy 44:3317–3324. https://doi.org/10.1016/j.ijhydene.2018.09.066 Kovalev AA, Kovalev DA, Zhuravleva EA et al (2023) Biochemical hydrogen potential assay for predicting the patterns of the kinetics of semi-continuous dark fermentation. Bioresour Technol 376:128919. https://doi.org/10.1016/j.biortech.2023.128919 Krupp M, Widmann R (2009) Biohydrogen production by dark fermentation: experiences of continuous operation in large lab scale. Int J Hydrogen Energy 34:4509–4516. https://doi.org/10.1016/j.ijhydene.2008.10.043 Kumar G, Sivagurunathan P, Chen C, Lin C (2016) Batch and continuous biogenic hydrogen fermentation of acid pretreated de-oiled jatropha. RSC Adv 6:45482–45491. https://doi.org/10.1039/C6RA05628H Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35:589–593. https://doi.org/10.1016/S0032-9592(99)00109-0 Larimer FW, Chain P, Hauser L et al (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55–61. https://doi.org/10.1038/nbt923 Lee D (2015) Cost-benefit analysis, LCOE and evaluation of financial feasibility of full commercialization of biohydrogen. Int J Hydrogen Energy 41:4347–4357. https://doi.org/10.1016/j.ijhydene.2015.09.071 Lee DH (2016) Cost-benefit analysis, LCOE and evaluation of financial feasibility of full commercialization of biohydrogen. Int J Hydrogen Energy 41:4347–4357. https://doi.org/10.1016/J.IJHYDENE.2015.09.071 Lee SM, Na JG, Lee HS et al (2022) Development of natural seawater-based continuous biohydrogen production process using the hyperthermophilic archaeon Thermococcus onnurineus NA1. Int J Hydrogen Energy 47:36775–36783. https://doi.org/10.1016/j.ijhydene.2022.08.243 Legrand J, Artu A, Jérémy P (2021) A review on photobioreactor design and modelling for microalgae production. React Chem Eng 6:1134–1151. https://doi.org/10.1039/D0RE00450B Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185. https://doi.org/10.1016/S0360-3199(03)00094-6 Li C, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39. https://doi.org/10.1080/10643380600729071 Lin C, Chang R-C (2004) Fermentative hydrogen production at ambient temperature. Int J Hydrogen Energy 29:715–720. https://doi.org/10.1016/j.ijhydene.2003.09.002 Lin R, Cheng J, Ding L et al (2015) Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation. Bioresour Technol 196:250–255. https://doi.org/10.1016/j.biortech.2015.07.097 Liu Y, Liu J, He H et al (2021) A review of enhancement of biohydrogen productions by chemical addition using a supervised machine learning method. Energies 14:5916 Liu Y, Min J, Feng X et al (2020) A review of biohydrogen productions from lignocellulosic precursor via dark fermentation: perspective on hydrolysate composition and electron-equivalent balance. Energies 13:2451 Ljunggren M, Wallberg O, Zacchi G (2011) Techno-economic comparison of a biological hydrogen process and a 2nd generation ethanol process using barley straw as feedstock. Bioresour Technol 102:9524–9531. https://doi.org/10.1016/J.BIORTECH.2011.06.096 Ljunggren M, Zacchi G (2010) Techno-economic analysis of a two-step biological process producing hydrogen and methane. Bioresour Technol 101:7780–7788. https://doi.org/10.1016/j.biortech.2010.05.009 Lu C, Wang Y, Lee DJ et al (2019) Biohydrogen production in pilot-scale fermenter: effects of hydraulic retention time and substrate concentration. J Clean Prod 229:751–760. https://doi.org/10.1016/j.jclepro.2019.04.233 Lu C, Zhang H, Zhang Q et al (2020) An automated control system for pilot-scale biohydrogen production: design, operation and validation. Int J Hydrogen Energy 45:3795–3806. https://doi.org/10.1016/j.ijhydene.2019.04.288 Lu C, Zhang Z, Ge X et al (2016) Bio-hydrogen production from apple waste by photosynthetic bacteria HAU-M1. Int J Hydrogen Energy 41:13399–13407. https://doi.org/10.1016/j.ijhydene.2016.06.101 Łukajtis R, Hołowacz I, Kucharska K et al (2018) Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev 91:665–694. https://doi.org/10.1016/j.rser.2018.04.043 Mabutyana L, Pott RWM (2021) Photo-fermentative hydrogen production by Rhodopseudomonas palustris CGA009 in the presence of inhibitory compounds. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.12.189 Mäkinen AE, Nissilä ME, Puhakka JA (2012) Dark fermentative hydrogen production from xylose by a hot spring enrichment culture. Int J Hydrogen Energy 37:12234–12240. https://doi.org/10.1016/j.ijhydene.2012.05.158 Maluta F, Paglianti A, Montante G (2019) Modelling of biohydrogen production in stirred fermenters by computational fluid dynamics. Proc Saf Environ Prot. https://doi.org/10.1016/j.psep.2018.09.020 Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrogen Energy 33:279–286. https://doi.org/10.1016/j.ijhydene.2007.07.026 McCully AL, McKinlay JB (2016) Disrupting Calvin cycle phosphoribulokinase activity in Rhodopseudomonas palustris increases the H2 yield and specific production rate proportionately. Int J Hydrogen Energy 41:4143–4149. https://doi.org/10.1016/j.ijhydene.2016.01.003 Melis A, Zhang L, Forestier M et al (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135. https://doi.org/10.1104/pp.122.1.127 Melitos G, Voulkopoulos X, Zabaniotou A (2021) Waste to sustainable biohydrogen production via photo-fermentation and biophotolysis—a systematic review. Renew Energy Environ Sustain 6:45. https://doi.org/10.1051/rees/2021047 Mikheeva ER, Katraeva IV, Kovalev AA et al (2021) The start-up of continuous biohydrogen production from cheese whey: comparison of inoculum pretreatment methods and reactors with moving and fixed polyurethane carriers. Appl Sci 11:1–16. https://doi.org/10.3390/app11020510 Mikheeva ER, Katraeva IV, Vorozhtsov DL et al (2022) Dark fermentative biohydrogen production from confectionery wastewater in continuous-flow reactors. Int J Hydrogen Energy 47:22348–22358. https://doi.org/10.1016/j.ijhydene.2022.05.131 Mirón AS, Camacho FG, Gómez AC et al (2000) Bubble-column and airlift photobioreactors for algal culture. AIChE J 46:1872–1887. https://doi.org/10.1002/aic.690460915 Mona S, Kumar SS, Kumar V et al (2020) Green technology for sustainable biohydrogen production (waste to energy): a review. Sci Total Environ 728:138481. https://doi.org/10.1016/j.scitotenv.2020.138481 Monroy I, Guevara-López E, Buitrón G (2018) Biohydrogen production by batch indoor and outdoor photo-fermentation with an immobilized consortium: a process model with neural networks. Biochem Eng J 135:1–10. https://doi.org/10.1016/j.bej.2018.01.026 Montante G, Magelli F, Paglianti A (2013) Fluid-dynamics characteristics of a vortex-ingesting stirred tank for biohydrogen production. Chem Eng Res Des 91:2198–2208. https://doi.org/10.1016/j.cherd.2013.04.008 Mowbray M, Savage T, Wu C et al (2021) Machine learning for biochemical engineering: a review. Biochem Eng J 172:108054. https://doi.org/10.1016/j.bej.2021.108054 Mutsvene B, Chetty M, Kumari S, Bux F (2023) Biohydrogen production from brewery wastewater in an anaerobic baffled reactor. A preliminary techno-economic evaluation. South African J Chem Eng 43:9–23. https://doi.org/10.1016/J.SAJCE.2022.09.012 Muzziotti D, Adessi A, Faraloni C et al (2016) Hydrogen production in Rhodopseudomonas palustris as a way to cope with high light intensities. Res Microbiol 167:350–356. https://doi.org/10.1016/j.resmic.2016.02.003 Nanda S, Li K, Abatzoglou N et al (2017) Advancements and confinements in hydrogen production technologies. Bioenergy Systems for the Future. Woodhead Publishing, Sawston, pp 373–418 Nasr M, Tawfik A, Ookawara S et al (2015) Continuous biohydrogen production from starch wastewater via sequential dark-photo fermentation with emphasize on maghemite nanoparticles. J Ind Eng Chem 21:500–506. https://doi.org/10.1016/j.jiec.2014.03.011 Nasr N, Hafez H, El Naggar MH, Nakhla G (2013) Application of artificial neural networks for modeling of biohydrogen production. Int J Hydrogen Energy 38:3189–3195. https://doi.org/10.1016/j.ijhydene.2012.12.109 Nassef AM, Fathy A, Abdelkareem MA, Olabi AG (2022) Increasing bio-hydrogen production-based steam reforming ANFIS based model and metaheuristics. Eng Anal Bound Elem 138:202–210. https://doi.org/10.1016/j.enganabound.2022.02.015 Nath K, Das D (2011) Modeling and optimization of fermentative hydrogen production. Bioresour Technol 102:8569–8581. https://doi.org/10.1016/j.biortech.2011.03.108 Nayak BK, Roy S, Das D (2014) Biohydrogen production from algal biomass (Anabaena sp. PCC 7120) cultivated in airlift photobioreactor. Int J Hydrogen Energy 39:7553–7560. https://doi.org/10.1016/j.ijhydene.2013.07.120 Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 67:597–611. https://doi.org/10.1016/J.RSER.2016.09.044 Niño-Navarro C, Chairez I, Torres-Bustillos L et al (2016) Effects of fluid dynamics on enhanced biohydrogen production in a pilot stirred tank reactor: CFD simulation and experimental studies. Int J Hydrogen Energy 41:14630–14640. https://doi.org/10.1016/j.ijhydene.2016.06.236 Nissilä ME, Lay CH, Puhakka JA (2014) Dark fermentative hydrogen production from lignocellulosic hydrolyzates—a review. Biomass Bioenerg 67:145–159. https://doi.org/10.1016/j.biombioe.2014.04.035 Niu K, Zhang X, Tan WS, Zhu ML (2011) Effect of culture conditions on producing and uptake hydrogen flux of biohydrogen fermentation by metabolic flux analysis method. Bioresour Technol 102:7294–7300. https://doi.org/10.1016/j.biortech.2011.05.001 Nualsri C, Kongjan P, Reungsang A (2016) Direct integration of CSTR-UASB reactors for two-stage hydrogen and methane production from sugarcane syrup. Int J Hydrogen Energy 41:17884–17895. https://doi.org/10.1016/j.ijhydene.2016.07.135 Oh S-E, Iyer P, Bruns MA, Logan BE (2004) Biological hydrogen production using a membrane bioreactor. Biotechnol Bioeng 87:119–127. https://doi.org/10.1002/bit.20127 Ohnishi A, Hasegawa Y, Fujimoto N, Suzuki M (2022) Biohydrogen production by mixed culture of Megasphaera elsdenii with lactic acid bacteria as lactate-driven dark fermentation. Bioresour Technol 343:126076. https://doi.org/10.1016/j.biortech.2021.126076 Oncel S, Vardar-Sukan F (2009) Photo-bioproduction of hydrogen by Chlamydomonas reinhardtii using a semi-continuous process regime. Int J Hydrogen Energy 34:7592–7602. https://doi.org/10.1016/j.ijhydene.2009.07.027 Özkan E, Uyar B, Özgür E et al (2012) Photofermentative hydrogen production using dark fermentation effluent of sugar beet thick juice in outdoor conditions. Int J Hydrogen Energy 37:2044–2049. https://doi.org/10.1016/j.ijhydene.2011.06.035 Padovani G, Vaičiulyte S, Carlozzi P (2015) BioH2 photoproduction by means of Rhodopseudomonas palustris sp. cultured in a lab-scale photobioreactor operated in batch, fed-batch and semi-continuous modes. Fuel 166:203–210. https://doi.org/10.1016/j.fuel.2015.10.124 Pakarinen O, Lehtomäki A, Rintala J (2008) Batch dark fermentative hydrogen production from grass silage: the effect of inoculum, pH, temperature and VS ratio. Int J Hydrogen Energy 33:594–601. https://doi.org/10.1016/j.ijhydene.2007.10.008 Palamae S, Choorit W, Dechatiwongse P et al (2018) Production of renewable biohydrogen by Rhodobacter sphaeroides S10: a comparison of photobioreactors. J Clean Prod 181:318–328. https://doi.org/10.1016/j.jclepro.2018.01.238 Pandey AK, Park J, Ko J et al (2023) Machine learning in fermentative biohydrogen production: advantages, challenges, and applications. Bioresour. Technol. 370:128502 Park JH, Chandrasekhar K, Jeon BH et al (2021) State-of-the-art technologies for continuous high-rate biohydrogen production. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.124304 Patel SKS, Gupta RK, Das D et al (2021) Continuous biohydrogen production from poplar biomass hydrolysate by a defined bacterial mixture immobilized on lignocellulosic materials under non-sterile conditions. J Clean Prod 287:125037. https://doi.org/10.1016/j.jclepro.2020.125037 Phongjarus N, Suvaphat C, Srichai N, Ritchie RJ (2018) Photoheterotrophy of photosynthetic bacteria (Rhodopseudomonas palustris) growing on oil palm and soybean cooking oils. Environ Technol Innov 10:290–304. https://doi.org/10.1016/j.eti.2018.03.002 Policastro G, Cesaro A, Fabbricino M (2022) Photo-fermentative hydrogen production from cheese whey: engineering of a mixed culture process in a semi-continuous, tubular photo-bioreactor. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.07.063 Pott RWM, Howe CJ, Dennis JS (2013) Photofermentation of crude glycerol from biodiesel using Rhodopseudomonas palustris: Comparison with organic acids and the identification of inhibitory compounds. Bioresour Technol 130:725–730. https://doi.org/10.1016/j.biortech.2012.11.126 Pott RWM, Johnstone-Robertson M, Verster B et al (2018) Wastewater biorefineries: Integrating water treatment and value recovery. Green Energy Technol. https://doi.org/10.1007/978-3-319-63612-2_18 Preethi UTMM, Rajesh Banu J et al (2019) Biohydrogen production from industrial wastewater: an overview. Bioresour Technol Reports 7:100287. https://doi.org/10.1016/j.biteb.2019.100287 Qyyum MA, Ismail S, Ni SQ et al (2022) Harvesting biohydrogen from industrial wastewater: production potential, pilot-scale bioreactors, commercialization status, techno-economics, and policy analysis. J Clean Prod 340:130809. https://doi.org/10.1016/j.jclepro.2022.130809 Rai PK, Singh SP (2016) Integrated dark- and photo-fermentation: recent advances and provisions for improvement. Int J Hydrogen Energy 41:19957–19971. https://doi.org/10.1016/j.ijhydene.2016.08.084 Rajesh Banu J, Kavitha S, Yukesh Kannah R et al (2020) Industrial wastewater to biohydrogen: possibilities towards successful biorefinery route. Bioresour Technol 298:122378. https://doi.org/10.1016/j.biortech.2019.122378 Ramprakash B, Lindblad P, Eaton-rye JJ, Incharoensakdi A (2022) Current strategies and future perspectives in biological hydrogen production : a review. Renew Sustain Energy Rev 168:112773. https://doi.org/10.1016/j.rser.2022.112773 Ross BS, Pott RWM (2020) Hydrogen production by immobilized Rhodopseudomonas palustris in packed or fluidized bed photobioreactor systems. Int J Hydrogen Energy 46:1715–1727. https://doi.org/10.1016/j.ijhydene.2020.10.061 Saini AK, Radu T, Paritosh K et al (2021) Bioengineered bioreactors: a review on enhancing biomethane and biohydrogen production by CFD modeling. Bioengineered 12:6418–6433 Sanchez A, Ayala OR, Hernandez-Sanchez P et al (2020) An environment-economic analysis of hydrogen production using advanced biorefineries and its comparison with conventional technologies. Int J Hydrogen Energy 45:27994–28006. https://doi.org/10.1016/J.IJHYDENE.2020.07.135 Sarma S, Anand A, Dubey VK, Moholkar VS (2017) Metabolic flux network analysis of hydrogen production from crude glycerol by Clostridium pasteurianum. Bioresour Technol 242:169–177. https://doi.org/10.1016/j.biortech.2017.03.168 Sathyaprakasan P, Kannan G (2015) Economics of bio-hydrogen production. Int J Environ Sci Dev 6:352–356. https://doi.org/10.7763/IJESD.2015.V6.617 Sekoai PT, Awosusi AA, Yoro KO et al (2018) Microbial cell immobilization in biohydrogen production: a short overview. Crit Rev Biotechnol 38:157–171. https://doi.org/10.1080/07388551.2017.1312274 Sekoai PT, Gueguim Kana EB (2014) Semi-pilot scale production of hydrogen from organic fraction of solid municipal waste and electricity generation from process effluents. Biomass Bioenerg 60:156–163. https://doi.org/10.1016/j.biombioe.2013.11.008 Shaikh A, Al-Dahhan M (2013) Scale-up of bubble column reactors: a review of current state-of-the-art. Ind Eng Chem Res 52:8091–8108. https://doi.org/10.1021/ie302080m Sharma AK, Kumar Ghodke P, Goyal N et al (2022) Machine learning technology in biohydrogen production from agriculture waste: recent advances and future perspectives. Bioresour Technol. https://doi.org/10.1016/j.biortech.2022.128076 Sharma P, Jain A, Bora BJ et al (2023) Application of modern approaches to the synthesis of biohydrogen from organic waste. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.03.029 Show KY, Lee DJ, Tay JH et al (2012) Biohydrogen production: current perspectives and the way forward. Int J Hydrogen Energy 37:15616–15631. https://doi.org/10.1016/J.IJHYDENE.2012.04.109 Sillero L, Gustavo W (2022) A bibliometric analysis of the hydrogen production from dark fermentation. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.06.083 Singh T, Alhazmi A, Mohammad A et al (2021) Integrated biohydrogen production via lignocellulosic waste : opportunity, challenges & future prospects. Bioresour Technol 338:125511. https://doi.org/10.1016/j.biortech.2021.125511 Sirohi R, Kumar Pandey A, Ranganathan P et al (2022) Design and applications of photobioreactors—a review. Bioresour Technol 349:126858. https://doi.org/10.1016/j.biortech.2022.126858 Sivagurunathan P, Anburajan P, Park J et al (2016a) Mesophilic biogenic H2 production using galactose in a fixed bed reactor. Int J Hydrogen Energy 42:3658–3666. https://doi.org/10.1016/j.ijhydene.2016.07.203 Sivagurunathan P, Kumar G, Bakonyi P et al (2016b) A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. Int J Hydrogen Energy 41:3820–3836. https://doi.org/10.1016/j.ijhydene.2015.12.081 Sivagurunathan P, Sen B, Lin C-Y (2015) High-rate fermentative hydrogen production from beverage wastewater. Appl Energy 147:1–9. https://doi.org/10.1016/j.apenergy.2015.01.136 Sivagurunathan P, Sen B, Lin CY (2014) Overcoming propionic acid inhibition of hydrogen fermentation by temperature shift strategy. Int J Hydrogen Energy 39:19232–19241. https://doi.org/10.1016/j.ijhydene.2014.03.260 Song W, Rashid N, Choi W, Lee K (2011) Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis. Bioresour Technol 102:8676–8681. https://doi.org/10.1016/j.biortech.2011.02.082 Srirugsa T, Prasertsan S, Theppaya T et al (2017) Comparative study of Rushton and paddle turbines performance for biohydrogen production from palm oil mill effluent in a continuous stirred tank reactor under thermophilic condition. Chem Eng Sci 174:354–364. https://doi.org/10.1016/j.ces.2017.09.024 Srirugsa T, Prasertsan S, Theppaya T et al (2019) Appropriate mixing speeds of Rushton turbine for biohydrogen production from palm oil mill effluent in a continuous stirred tank reactor. Energy 179:823–830. https://doi.org/10.1016/j.energy.2019.04.210 Srivastava N, Srivastava M, AbdAllah EF et al (2021) Biohydrogen production using kitchen waste as the potential substrate: a sustainable approach. Chemosphere 271:129537. https://doi.org/10.1016/j.chemosphere.2021.129537 Stavropoulos KP, Kopsahelis A, Zafiri C, Kornaros M (2016) Effect of pH on continuous biohydrogen production from end-of-life dairy products (EoL-DPs) via dark fermentation. Waste Biomass Valori 7:753–764. https://doi.org/10.1007/s12649-016-9548-7 Stojkovic D, Torzillo G, Faraloni C, Valant M (2015) Hydrogen production by sulfur-deprived TiO2-encapsulated Chlamydomonas reinhardtii cells. Int J Hydrogen Energy 40:3201–3206. https://doi.org/10.1016/j.ijhydene.2014.12.115 Sultana N, Hossain SMZ, Aljameel SS et al (2023) Biohydrogen from food waste: modeling and estimation by machine learning based super learner approach. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.01.339 Suresh G, Kumari P, Mohan SV (2023) Light-dependent biohydrogen production: progress and perspectives. Bioresour Technol. https://doi.org/10.1016/j.biortech.2023.129007 Sydney EB, Duarte ER, Martinez Burgos WJ et al (2020) Development of short chain fatty acid-based artificial neuron network tools applied to biohydrogen production. Int J Hydrogen Energy 45:5175–5181. https://doi.org/10.1016/j.ijhydene.2019.10.128 Taheri E, Amin MM, Fatehizadeh A et al (2021) Artificial intelligence modeling to predict transmembrane pressure in anaerobic membrane bioreactor-sequencing batch reactor during biohydrogen production. J Environ Manage. https://doi.org/10.1016/j.jenvman.2021.112759 Tao Z, Yang Q, Yao F et al (2020) The inhibitory effect of thiosulfinate on volatile fatty acid and hydrogen production from anaerobic co-fermentation of food waste and waste activated sludge. Bioresour Technol 297:122428. https://doi.org/10.1016/j.biortech.2019.122428 Tapia-Rodríguez A, Ibarra-Faz E, Razo-Flores E (2019) Hydrogen and methane production potential of agave bagasse enzymatic hydrolysates and comparative technoeconomic feasibility implications. Int J Hydrogen Energy 44:17792–17801. https://doi.org/10.1016/J.IJHYDENE.2019.05.087 Teke GM, Gakingo GK, Pott RWM (2022) The liquid-liquid extractive fermentation of lactic acid in a novel semi-partition bioreactor (SPB). J Biotechnol. https://doi.org/10.1016/j.jbiotec.2022.10.017 Teke GM, Gakingo GK, Pott RWM (2022b) Towards improved understanding of the hydrodynamics of a semi-partition bioreactor (SPB): a numerical investigation. Chem Eng Res Des 177:210–222. https://doi.org/10.1016/j.cherd.2021.10.026 Teke GM, Gakingo GK, Pott RWM (2022) A Numerical investigation of the hydrodynamic and mass transfer behavior of a liquid- liquid semi-partition bioreactor (SPB) designed for in-situ extractive fermentation. Chem Eng Sci. https://doi.org/10.1016/j.ces.2022.118226 Teke GM, Pott RWM (2021) Design and evaluation of a continuous semipartition bioreactor for in situ liquid-liquid extractive fermentation. Biotechnol Bioeng 118:58–71. https://doi.org/10.1002/bit.27550 Teke GM, Tai SL, Pott RWM (2021) extractive fermentation processes: modes of operation and application. ChemBioEng Rev 9:1–19. https://doi.org/10.1002/cben.202100028 Tian H, Li J, Yan M et al (2019) Organic waste to biohydrogen: a critical review from technological development and environmental impact analysis perspective. Appl Energy 256:113961. https://doi.org/10.1016/j.apenergy.2019.113961 Trad Z, Fontaine JP, Larroche C, Vial C (2016) Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation. Renew Energy 98:264–282. https://doi.org/10.1016/j.renene.2016.03.094 Urbaniec K, Grabarczyk R (2014) Hydrogen production from sugar beet molasses—a techno-economic study. J Clean Prod 65:324–329. https://doi.org/10.1016/J.JCLEPRO.2013.08.027 Uyar B, Eroglu I, Yücel M et al (2007) Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int J Hydrogen Energy 32:4670–4677. https://doi.org/10.1016/j.ijhydene.2007.07.002 Uys PRS (2019) Photo-fermentative treatment of wastewaters: surveying local sources and examining their treatment by Rhodopseudomonas palustris (Master’s Thesis). Stellenbosch University, Stellenbosch Venkata Mohan S (2009) Harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: process evaluation towards optimization. Int J Hydrogen Energy 34:7460–7474. https://doi.org/10.1016/j.ijhydene.2009.05.062 Volpini V, Lovato G, Albanez R et al (2018) Biomethane generation in an AnSBBR treating effluent from the biohydrogen production from vinasse: optimization, metabolic pathways modeling and scale-up estimation. Renew Energy 116:288–298. https://doi.org/10.1016/j.renene.2017.09.004 Wang A, Sun D, Cao G et al (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 102:4137–4143. https://doi.org/10.1016/j.biortech.2010.10.137 Wang B, Wan W, Wang J (2008) Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production. Int J Hydrogen Energy 33:7013–7019. https://doi.org/10.1016/j.ijhydene.2008.09.027 Wang J, Wan W (2009) Kinetic models for fermentative hydrogen production: a review. Int J Hydrogen Energy 34:3313–3323. https://doi.org/10.1016/j.ijhydene.2009.02.031 Wang S, Zhang T, Bao M et al (2020) Microbial production of hydrogen by mixed culture technologies: a review. Biotechnol J 15:1–8. https://doi.org/10.1002/biot.201900297 Wang X, Ding J, Guo W, Ren N (2010a) A hydrodynamics—reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation. Bioresour Technol 101:9749–9757. https://doi.org/10.1016/j.biortech.2010.07.115 Wang X, Ding J, Guo WQ, Ren NQ (2010b) Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation. Int J Hydrogen Energy 35:10960–10966. https://doi.org/10.1016/j.ijhydene.2010.07.060 Wang X, Ding J, Ren NQ et al (2009) CFD simulation of an expanded granular sludge bed (EGSB) reactor for biohydrogen production. Int J Hydrogen Energy 34:9686–9695. https://doi.org/10.1016/j.ijhydene.2009.10.027 Wang Y, Tahir N, Cao W et al (2019) Grid columnar flat panel photobioreactor with immobilized photosynthetic bacteria for continuous photofermentative hydrogen production. Bioresour Technol 291:121806. https://doi.org/10.1016/j.biortech.2019.121806 Wang Y, Tang M, Ling J et al (2021) Modeling biohydrogen production using different data driven approaches. Int J Hydrogen Energy 46:29822–29833. https://doi.org/10.1016/j.ijhydene.2021.06.122 Wen HQ, Du J, Xing DF et al (2017) Enhanced photo-fermentative hydrogen production of Rhodopseudomonas sp. nov. strain A7 by biofilm reactor. Int J Hydrogen Energy 42:18288–18294. https://doi.org/10.1016/j.ijhydene.2017.04.150 Willquist K, Nkemka VN, Svensson H et al (2012) Design of a novel biohythane process with high H2 and CH4 production rates. Int J Hydrogen Energy 37:17749–17762. https://doi.org/10.1016/J.IJHYDENE.2012.08.092 Winkler M, Hemsehemeier A, Gotor C et al (2002) [Fe]-hydrogenase in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. Int J Hydrogen Energy 27:1431–1439. https://doi.org/10.1016/S0360-3199(02)00095-2 Wodołażski A, Smoliński A (2022) Bio-hydrogen production in packed bed continuous plug flow reactor—CFD-multiphase modelling. Processes. https://doi.org/10.3390/pr10101907 Wu B (2013) Advances in the use of CFD to characterize, design and optimize bioenergy systems. Comput Electron Agric 93:195–208. https://doi.org/10.1016/j.compag.2012.05.008 Xiao N (2017) Use of a purple non-sulphur bacterium, Rhodopseudomonas palustris, as a biocatalyst for hydrogen production from glycerol (Doctoral Dissertation). University of Cambridge, Cambridge Xu L, Cheng X, Wu S, Wang Q (2017) Co-cultivation of Chlamydomonas reinhardtii with Azotobacter chroococcum improved H2 production. Biotechnol Lett 39:731–738. https://doi.org/10.1007/s10529-017-2301-x Xu L, Li D, Wang Q, Wu S (2016) Improved hydrogen production and biomass through the co-cultivation of Chlamydomonas reinhardtii and Bradyrhizobium japonicum. Int J Hydrogen Energy 41:9276–9283. https://doi.org/10.1016/j.ijhydene.2016.04.009 Xu Z, Zheng P, Sun J, Ma Y (2013) ReacKnock: identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network. PLoS One. https://doi.org/10.1371/journal.pone.0072150 Yadav S, Singh V, Mahata C, Das D (2021) Optimization for simultaneous enhancement of biobutanol and biohydrogen production. Int J Hydrogen Energy 46:3726–3741. https://doi.org/10.1016/j.ijhydene.2020.10.267 Yahaya E, Lim SW, Yeo WS, Nandong J (2022) A review on process modeling and design of biohydrogen. Int J Hydrogen Energy 47:30404–30427 Yang G, Wang J (2018) Enhancement of biohydrogen production from grass by ferrous ion and variation of microbial community. Fuel 233:404–411. https://doi.org/10.1016/j.fuel.2018.06.067 Yin Y, Wang J (2017) Isolation and characterization of a novel strain Clostridium butyricum INET1 for fermentative hydrogen production. Int J Hydrogen Energy 42:12173–12180. https://doi.org/10.1016/j.ijhydene.2017.02.083 Yokoyama H, Waki M, Moriya N et al (2007) Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 74:474–483. https://doi.org/10.1007/s00253-006-0647-4 Younesi H, Najafpour G, Ku Ismail KS et al (2008) Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum. Bioresour Technol 99:2612–2619. https://doi.org/10.1016/j.biortech.2007.04.059 Yu H, Zhu Z, Hu W, Zhang H (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy 27:1359–1365. https://doi.org/10.1016/S0360-3199(02)00073-3 Yun YM, Lee MK, Im SW et al (2018) Biohydrogen production from food waste: current status, limitations, and future perspectives. Bioresour Technol 248:79–87. https://doi.org/10.1016/j.biortech.2017.06.107 Zarei Z, Malekshahi P, Morowvat MH et al (2021) Effect of superficial gas velocity on continuous hydrogen production by Anabaena sp. in an internal-loop airlift bioreactor. Res Sq. https://doi.org/10.21203/rs.3.rs-599392/v1 Zhang Q, Wang Y, Zhang Z et al (2017) Photo-fermentative hydrogen production from crop residue: a mini review. Bioresour Technol 229:222–230. https://doi.org/10.1016/j.biortech.2017.01.008 Zhang Q, Zhang Z, Zhang H, Li Y (2023) Production of biohydrogen in photobioreactors. Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 269–300 Zhang Z, Ding K, Ma X et al (2023) Hydrodynamic design of down-flow packed bed reactor regulated the biohydrogen production and microbial enrichment. Energy. https://doi.org/10.1016/j.energy.2023.127059 Zhang Z, Wu Q, Zhang C et al (2014) Effect of inlet velocity on heat transfer process in a novel photo-fermentation biohydrogen production bioreactor using computational fluid dynamics simulation. BioResources. https://doi.org/10.15376/biores.10.1.469-481 Zhang Z, Yue J, Zhou X et al (2014) Photo-fermentative bio-hydrogen production from agricultural residue enzymatic hydrolyzate and the enzyme reuse. BioResources 9:2299–2310. https://doi.org/10.15376/biores.9.2.2299-2310 Zhao C, Zhang N, Zheng H et al (2019) Effective and long-term continuous bio-hydrogen production by optimizing fixed-bed material in the bioreactor. Process Biochem 83:55–63. https://doi.org/10.1016/j.procbio.2019.04.021 Zhiping Z, Quanguo Z, Jianzhi Y et al (2017) CFD modeling and experiment of heat transfer in a tubular photo-bioreactor for photo-fermentation bio-hydrogen production. Int J Agric Biol Eng 10:209–217. https://doi.org/10.3965/j.ijabe.20171001.2513