Transgenic Research
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Improved metabolic action of a bacterial lysine decarboxylase gene in tobacco hairy root cultures by its fusion to arbcS transit peptide coding sequence
Transgenic Research - Tập 5 - Trang 193-201 - 1996
The gene of a bacterial lysine decarboxylase (ldc) fused to arbcS transit peptide coding sequence (tp), and under the control of the CaMV 35S promoter, was expressed in hairy root cultures ofNicotiana tabacum. The fusion of theldc to the targeting signal sequence improved the performance of the bacterial gene in the plant cells in many respects. Nearly all transgenic hairy root cultures harbouring the35S-tp-ldc gene contained distinctly higher lysine decarboxylase activity (from 1.5 to 30 pkat LDC per mg protein) than those which had been transformed with constructs in which the gene had been directly cloned behind the CaMV 35S promoter. The higher enzyme activity led to the accumulation of up to 0.7% cadaverine on a dry mass basis. In addition, part of the cadaverine pool was used for increased biosynthesis of anabasine, an alkaloid which was hardly detectable in control cultures. The best line contained anabasine levels of 0.5% dry mass, which could further be enhanced by feeding of lysine.
The HIV-1 Pr55gag polyprotein binds to plastidial membranes and leads to severe impairment of chloroplast biogenesis and seedling lethality in transplastomic tobacco plants
Transgenic Research - Tập 24 - Trang 319-331 - 2014
Chloroplast genetic engineering has long been recognised as a powerful technology to produce recombinant proteins. To date, however, little attention has been given to the causes of pleiotropic effects reported, in some cases, as consequence of the expression of foreign proteins in transgenic plastids. In this study, we investigated the phenotypic alterations observed in transplastomic tobacco plants accumulating the Pr55gag polyprotein of human immunodeficiency virus (HIV-1). The expression of Pr55gag at high levels in the tobacco plastome leads to a lethal phenotype of seedlings grown in soil, severe impairment of plastid development and photosynthetic activity, with chloroplasts largely resembling undeveloped proplastids. These alterations are associated to the binding of Pr55gag to thylakoids. During particle assembly in HIV-1 infected human cells, the binding of Pr55gag to a specific lipid [phosphatidylinositol-(4-5) bisphosphate] in the plasma membrane is mediated by myristoylation at the amino-terminus and the so-called highly basic region (HBR). Surprisingly, the non-myristoylated Pr55gag expressed in tobacco plastids was likely able, through the HBR motif, to bind to nonphosphorous glycerogalactolipids or other classes of lipids present in plastidial membranes. Although secondary consequences of disturbed chloroplast biogenesis on expression of nuclear-encoded plastid proteins cannot be ruled out, results of proteomic analyses suggest that their altered accumulation could be due to retrograde control in which chloroplasts relay their status to the nucleus for fine-tuning of gene expression.
Erratum to: Gene expression profiling in the submandibular gland, stomach, and duodenum of CAVI-deficient mice
Transgenic Research - - 2011
Transgenic sheep generated by lentiviral vectors: safety and integration analysis of surrogates and their offspring
Transgenic Research - Tập 22 - Trang 737-745 - 2012
The safety of HIV-1 based vectors was evaluated during the production of transgenic sheep. Vectors were introduced into the perivitelline space of in vivo derived one-cell sheep embryos by microinjection then transferred into the oviducts of recipient females. At 60–70 days of gestation, a portion of the recipients were euthanized and tissues collected from both surrogates and fetuses. Other ewes were allowed to carry lambs to term. Inadvertent transfer of vector from offspring to surrogates was evaluated in 330 blood and tissue samples collected from 57 ewes that served as embryo recipients. Excluding uterine contents, none of the samples tested positive for vector, indicating that that the vector did not cross the fetal maternal interface and infect surrogate ewes. Evaluating ewes, fetuses and lambs for replication competent lentivirus (RCL); 84 serum samples analyzed for HIV-1 capsid by ELISA and over 600 blood and tissue samples analyzed by quantitative PCR for the VSV-G envelopes revealed no evidence of RCL. Results of these experiments provide further evidence as to the safety of HIV-1 based vectors in animal and human applications.
Gene Silencing-Based Disease Resistance
Transgenic Research - Tập 11 - Trang 639-653 - 2002
The definition of a disease is fundamentally difficult, even if one considers only genetically based diseases. In its broadest sense, disease can be defined as any deviation from the norm that results in a physiological disadvantage. Natural selection ensures that the norm for any given species is constantly changing. In addition, some disadvantages are latent and might only manifest under certain environmental conditions. Conversely, an apparent disadvantage can carry a benefit, for example, the disease sickle-cell anemia that is an advantage in malarial areas. Because of the difficulties in giving disease a precise definition, in this review, gene silencing-based disease resistance will be restricted to the description of gene inactivation processes that contribute to maintain the physical fitness of an organism. In this sense, we are concerned with the elimination of invasive nucleic acid expressing. In numerous organisms, a variety of severe diseases are caused by the attack of invasive nucleic acids such as viruses and retroviral or transposable elements. Organisms have developed diverse mechanisms to defend themselves against such attack that include immune responses and apoptosis. Fungi, plants, invertebrates and vertebrates also enlist gene silencing systems to counteract the harmful effects of invasive nucleic acids. In particular, plants that lack interferon and immune responses have established efficient transcriptional and post-transcriptional gene silencing systems. In this review, we describe how plants defend against invasive nucleic acids and focus on the continual evolutionary battle between plants and viruses. In addition, the importance of controlling transposon activity is outlined. Finally, gene silencing-related mechanisms of genomic imprinting and X-chromosome inactivation are discussed in the context of disease resistance.
Heterogeneity in the distribution of genetically modified and conventional oilseed rape within fields and seed lots
Transgenic Research - Tập 17 - Trang 805-816 - 2008
The implementation of co-existence in the commercialisation of GM crops requires GM and non-GM products to be segregated in production and supply. However, maintaining segregation in oilseed rape will be made difficult by the highly persistent nature of this species. An understanding of its population dynamics is needed to predict persistence and develop potential strategies for control, while to ensure segregation is being achieved, the production of GM oilseed rape must be accompanied by the monitoring of GM levels in crop or seed populations. Heterogeneity in the spatial distribution of oilseed rape has the potential to affect both control and monitoring and, although a universal phenomenon in arable weeds and harvested seed lots, spatial heterogeneity in oilseed rape populations remains to be demonstrated and quantified. Here we investigate the distribution of crop and volunteer populations in a commercial field before and during the cultivation of the first conventional oilseed rape (winter) crop since the cultivation of a GM glufosinate-tolerant oilseed rape crop (spring) three years previously. GM presence was detected by ELISA for the PAT protein in each of three morphologically distinguishable phenotypes: autumn germinating crop-type plants (3% GM), autumn-germinating ‘regrowths’ (72% GM) and spring germinating ‘small-type’ plants (17% GM). Statistical models (Poisson log-normal and binomial logit-normal) were used to describe the spatial distribution of these populations at multiple spatial scales in the field and of GM presence in the harvested seed lot. Heterogeneity was a consistent feature in the distribution of GM and conventional oilseed rape. Large trends across the field (50 × 400 m) and seed lot (4 × 1.5 × 1.5 m) were observed in addition to small-scale heterogeneity, less than 20 m in the field and 20 cm in the seed lot. The heterogeneity was greater for the ‘regrowth’ and ‘small’ phenotypes, which were likely to be volunteers and included most of the GM plants detected, than for the largely non-GM ‘crop’ phenotype. The implications of the volunteer heterogeneity for field management and GM-sampling are discussed.
Improvement of recombinant miraculin production in transgenic tomato by crossbreeding-based genetic background modification
Transgenic Research - - 2022
An important optimization step in plant-based recombinant protein production systems is the selection of an appropriate cultivar after a potential host has been determined. Previously, we have shown that transgenic tomatoes of the variety ‘Micro-Tom’ accumulate incredibly high levels of miraculin (MIR) due to the introduction of MIR gene controlled by a CaMV35S promoter and a heat-shock protein terminator. However, ‘Micro-Tom’ is unsuitable for commercial production of MIR as it is a dwarf cultivar characterized by small-sized fruit and poor yield. Here, we used the crossbreeding approach to transfer the high MIR accumulation trait of transgenic ‘Micro-Tom’ tomatoes to ‘Natsunokoma’ and ‘Aichi First’, two commercial cultivars producing medium and large fruit sizes, respectively. Fruits of the resultant crossbred lines were larger (~ 95 times), but their miraculin accumulation levels (~ 1,062 μg/g fresh mass) were comparable to the donor cultivar, indicating that the high miraculin accumulation trait was preserved regardless of fruit size or cultivar. Further, the transferred trait resulted in a 3–4 fold increase in overall miraculin production than that of the previously reported line 5B. These findings demonstrate the effectiveness of crossbreeding in improving MIR production in tomatoes and could pave the way for a more efficient production of recombinant proteins in other plants.
Stability of gene silencing-based resistance to Plum pox virus in transgenic plum (Prunus domestica L.) under field conditions
Transgenic Research - Tập 13 - Trang 427-436 - 2004
Plum pox virus (PPV) is one of the most devastating diseases of Prunus species. Since few sources of resistance to PPV have been identified, transgene-based resistance offers a complementary approach to developing PPV-resistant stone fruit cultivars. C5, a transgenic clone of Prunus domestica L., containing the PPV coat protein (CP) gene, has been described as highly resistant to PPV in greenhouse tests, displaying characteristics typical of post-transcriptional gene silencing (PTGS). We show in this report that C5 trees exposed to natural aphid vectors in the field remained uninfected after 4 years while susceptible transgenic and untransformed trees developed severe symptoms within the first year. C5 trees inoculated by chip budding showed only very mild symptoms and PPV could be detected in these trees by IC-RT-PCR. The PPV-CP transgene in C5 was specifically hyper-methylated with no detectable expression. These results indicate both stability and efficiency of PTGS-based PPV resistance in plum under field conditions.
Expression of hGM-CSF in silk glands of transgenic silkworms using gene targeting vector
Transgenic Research - Tập 21 - Trang 101-111 - 2011
The silk gland of the silkworm is a highly specialized organ that has the wonderful ability to synthesize and secrete silk protein. To express human granucyto-macrophage colony-stimulating factor (hGM-CSF) in the posterior silk glands of gene-targeted silkworms, a targeting vector pSK-FibL-L-A3GFP-PH-GMCSF-LPA-FibL-R was constructed, harboring a 1.2 kb portion of the left homogenous arm (FibL-L), a 0.5 kb portion of the right homogenous arm (FibL-R), fibroin H-chain-promoter-driven hGM-CSF and silkworm actin 3-promoter-driven gfp. The targeting vector was then introduced into the eggs of silkworm, and the transgenic silkworms were verified by PCR and DNA hybridization after being screened for the gfp gene. Western blotting analysis using an antibody against hGM-CSF demonstrated a specific band with a molecular weight of 22 kD in the silk glands of the G3 generation transgenic silkworms. The level of expression of hGM-CSF in the posterior silk glands of the G3 generation transgenic silkworms was approximately 2.70 ng/g of freeze-dried powdered posterior silk gland. These results showed that the heterologous gene could be introduced into the silkworm genome and expressed successfully. Further more, the exogenous genes existing in the G5 transgenic silkworm identified by PCR confirmed its integration stability. In addition, the silk glands containing expressed hGM-CSF performed the function of significantly increasing leukocyte count of CY-treated mice in a time-and-dose-dependent manner.
Tổng số: 1,537
- 1
- 2
- 3
- 4
- 5
- 6
- 10