Co-precipitation molecules hemopexin and transferrin may be key molecules for fibrillogenesis in TTR V30M amyloidogenesis

Transgenic Research - Tập 27 - Trang 15-23 - 2017
Mika Ohta1, Aki Sugano1, Naoya Hatano2, Hirotaka Sato3, Hirofumi Shimada4, Hitoshi Niwa4, Toshiyuki Sakaeda5, Hajime Tei6, Yoshiyuki Sakaki6, Ken-ichi Yamamura4,7, Yutaka Takaoka1,4,6
1Division of Medical Informatics and Bioinformatics, Kobe University Hospital, Kobe, Japan
2The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
3Department of Pathology, Division of Anatomical and Cellular Pathology, Iwate Medical University, Morioka, Japan
4Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
5Department of Phamacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
6Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
7Yamamura Project Laboratory, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan

Tóm tắt

The disease model of familial amyloidotic polyneuropathy—7.2-hMet30 mice—manifests amyloid deposition that consists of a human amyloidogenic mutant transthyretin (TTR) (TTR V30M). Our previous study found amyloid deposits in 14 of 27 7.2-hMet30 mice at 21–24 months of age. In addition, non-fibrillar TTR deposits were found in amyloid-negative 7.2hMet30 mice. These results suggested that TTR amyloidogenesis required not only mutant TTR but also an additional factor (or factors) as an etiologic molecule. To determine the differences in serum proteome in amyloid-positive and amyloid-negative mice in the 7.2-hMet30 model, we used proteomic analyses and studied serum samples obtained from these mice. Hemopexin (HPX) and transferrin (Tf) were detected in the serum samples from amyloid-positive mice and were also found in amyloid deposits via immunohistochemistry, but serum samples from amyloid-negative mice did not contain HPX and Tf. These two proteins were also not detected in non-fibrillar TTR deposits. In addition, in silico analyses suggested that HPX and Tf facilitate destabilization of TTR secondary structures and misfolding of TTR. These results suggest that HPX and Tf may be associated with TTR amyloidogenesis after fibrillogenesis in vivo.

Tài liệu tham khảo

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001 Bourgault S, Solomon JP, Reixach N, Kelly JW (2011) Sulfated glycosaminoglycans accelerate transthyretin amyloidogenesis by quaternary structural conversion. Biochemistry 50:1001–1015. https://doi.org/10.1021/bi101822y Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80–87. https://doi.org/10.1002/prot.10389 Colon W, Kelly JW (1992) Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31:8654–8660. https://doi.org/10.1021/bi00151a036 Glenner GG (1980a) Amyloid deposits and amyloidosis. The β-fibrilloses (first of two parts). N Engl J Med 302:1283–1292. https://doi.org/10.1056/NEJM198006053022305 Glenner GG (1980b) Amyloid deposits and amyloidosis. The β-fibrilloses (second of two parts). N Engl J Med 302:1333–1343. https://doi.org/10.1056/NEJM198006123022403 Hatano N, Hamada T (2008) Proteome analysis of pitcher fluid of the carnivorous plant Nepenthes alata. J Proteome Res 7:809–816. https://doi.org/10.1021/pr700566d Inoue S, Ohta M, Li Z, Zhao G, Takaoka Y, Sakashita N, Miyakawa K, Takada K, Tei H, Suzuki M, Masuoka M, Sakaki Y, Takahashi K, Yamamura K (2008) Specific pathogen free conditions prevent transthyretin amyloidosis in mouse models. Transgenic Res 17:817–826. https://doi.org/10.1007/s11248-008-9180-9 Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8:101–106 Lai Z, Colon W, Kelly JW (1996) The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid. Biochemistry 35:6470–6482. https://doi.org/10.1021/bi952501g Lei M, Yang M, Huo S (2004) Intrinsic versus mutation dependent instability/flexibility: a comparative analysis of the structure and dynamics of wild-type transthyretin and its pathogenic variants. J Struct Biol 148:153–168. https://doi.org/10.1016/j.jsb.2004.06.007 Mu Y, Jin S, Shen J, Sugano A, Takaoka Y, Qiang L, Imbimbo BP, Yamamura K, Li Z (2015) CHF5074 (CSP-1103) stabilizes human transthyretin in mice humanized at the transthyretin and retinol-binding protein loci. FEBS Lett 589:849–856. https://doi.org/10.1016/j.febslet.2015.02.020 Nagai H, Takaoka Y, Sugano A, Nakamachi Y, Kawano S, Nishigori C (2017) Identification of a heterozygous p.Gly568Val missense mutation in the TRPV3 gene in a Japanese patient with Olmsted syndrome: in silico analysis of TRPV3. J Dermatol. https://doi.org/10.1111/1346-8138.13844 Nagata Y, Tashiro F, Yi S, Murakami T, Maeda S, Takahashi K, Shimada K, Okamura H, Yamamura K (1995) A 6-kb upstream region of the human transthyretin gene can direct developmental, tissue-specific, and quantitatively normal expression in transgenic mouse. J Biochem 117:169–175 Nakano E, Ono R, Masaki T, Takeuchi S, Takaoka Y, Maeda E, Nishigori C (2014) Differences in clinical phenotype among patients with XP complementation group D: 3D structure and ATP-docking of XPD in silico. J Investig Dermatol 134:1775–1778. https://doi.org/10.1038/jid.2014.14 Ogasawara M, Nakamura Y, Morikawa N, Nitanai H, Moriguchi S, Chiba R, Saito H, Ohta M, Tanita T, Sugai T, Maeyama K, Yamauchi K, Takaoka Y (2016) Analysis of a single-codon E746 deletion in exon 19 of the epidermal growth factor receptor. Cancer Chemother Pharmacol 77:1019–1029. https://doi.org/10.1007/s00280-016-3021-y Pieper U, Webb BM, Barkan DT, Schneidman-Duhovny D, Schlessinger A, Braberg H, Yang Z, Meng EC, Pettersen EF, Huang CC, Datta RS, Sampathkumar P, Madhusudhan MS, Sjolander K, Ferrin TE, Burley SK, Sali A (2011) ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 39:D465–D474. https://doi.org/10.1093/nar/gkq1091 Qiang L, Guan Y, Li X, Liu L, Mu Y, Sugano A, Takaoka Y, Sakaeda T, Imbimbo BP, Yamamura KI, Jin S, Li Z (2017) CSP-1103 (CHF5074) stabilizes human transthyretin in healthy human subjects. Amyloid 24:42–51. https://doi.org/10.1080/13506129.2017.1308348 Sakaki Y, Yoshioka K, Tanahashi H, Furuya H, Sasaki H (1989) Human transthyretin (prealbumin) gene and molecular genetics of familial amyloidotic polyneuropathy. Mol Biol Med 6:161–168 Sekijima Y, Wiseman RL, Matteson J, Hammarstrom P, Miller SR, Sawkar AR, Balch WE, Kelly JW (2005) The biological and chemical basis for tissue-selective amyloid disease. Cell 121:73–85. https://doi.org/10.1016/j.cell.2005.01.018 Takaoka Y, Tashiro F, Yi S, Maeda S, Shimada K, Takahashi K, Sakaki Y, Yamamura K (1997) Comparison of amyloid deposition in two lines of transgenic mouse that model familial amyloidotic polyneuropathy, type I. Transgenic Res 6:261–269 Takaoka Y, Ohta M, Miyakawa K, Nakamura O, Suzuki M, Takahashi K, Yamamura K, Sakaki Y (2004) Cysteine 10 is a key residue in amyloidogenesis of human transthyretin Val30Met. Am J Pathol 164:337–345. https://doi.org/10.1016/S0002-9440(10),63123-9 Touw WG, Baakman C, Black J, te Beek TA, Krieger E, Joosten RP, Vriend G (2015) A series of PDB-related databanks for everyday needs. Nucleic Acids Res 43:D364–D368. https://doi.org/10.1093/nar/gku1028 Wakasugi S, Inomoto T, Yi S, Naito M, Uehira M, Iwanaga T, Maeda S, Araki K, Miyazaki J, Takahashi K, Shimada K, Yamamura K (1987) A transgenic mouse model of familial amyloidotic polyneuropathy. Proc Jpn Acad 63:344–347. https://doi.org/10.2183/pjab.63.344 Yamamura K, Wakasugi S, Maeda S, Inomoto T, Iwanaga T, Uehira M, Araki K, Miyazaki J, Shimada K (1987) Tissue-specific and developmental expression of human transthyretin gene in transgenic mice. Dev Genet 8:195–205. https://doi.org/10.1002/dvg.1020080404 Yang M, Lei M, Huo S (2003) Why is Leu55 → Pro55 transthyretin variant the most amyloidogenic: insights from molecular dynamics simulations of transthyretin monomers. Protein Sci 12:1222–1231. https://doi.org/10.1110/ps.0239703 Yi S, Takahashi K, Naito M, Tashiro F, Wakasugi S, Maeda S, Shimada K, Yamamura K, Araki S (1991) Systemic amyloidosis in transgenic mice carrying the human mutant transthyretin (Met30) gene. Pathologic similarity to human familial amyloidotic polyneuropathy, type I. Am J Pathol 138:403–412