thumbnail

Springer Science and Business Media LLC

  1360-8185

  1573-675X

 

Cơ quản chủ quản:  Springer Netherlands , SPRINGER

Lĩnh vực:
Cell BiologyClinical BiochemistryPharmacologyBiochemistry (medical)Pharmaceutical ScienceCancer Research

Phân tích ảnh hưởng

Thông tin về tạp chí

 

Các bài báo tiêu biểu

Apoptotic effect of fludarabine is independent of expression of IAPs in B-cell chronic lymphocytic leukemia
Tập 11 Số 2 - Trang 277-285 - 2006
K. L. Silva, D Vasconcellos, Eric Delfraro de Paula Castro, Arthur Moellmann Coelho, Rafael Linden, Raquel Ciuvalschi Maia
Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke
Tập 14 - Trang 469-477 - 2009
Junying Yuan
It has been a major challenge to develop effective therapeutics for stroke, a leading cause of death and serious debilitation. Intensive research in the past 15 years have implicated many regulators and the related mechanisms by which neuronal cell death is regulated. It is now clear that even a brief ischemic stroke may trigger complex cellular events that lead to both apoptotic and necrotic neuronal cell death in a progressive manner. Although efforts at developing specific chemical inhibitors for validated targets have been successful for in vitro enzymatic assays, the development of some of such inhibitors into human therapy has been often hindered by their in vivo bioavailability profile. Considerations for the ability to chemically target a cellular mechanism in manner compatible with disease targets in vivo might be emphasized early in the development process by putting a priority on identifying key targets that can be effectively targeted chemically. Thorough interrogation of cellular pathways by saturation chemical genetics may provide a novel strategy to identify multiple key molecular entities that can be targeted chemically in order to select a target suitable for the treatment of intended human diseases such as stroke.
HIV-1 viral genes and mitochondrial apoptosis
Tập 13 - Trang 1088-1099 - 2008
Devon J. Shedlock, Daniel Hwang, Andy Y. Choo, Christopher W. Chung, Karuppiah Muthumani, David B. Weiner
The mitochondrion is an organelle that regulates various cellular functions including the production of energy and programmed cell death. Aberrant mitochondrial function is often concomitant with various cytopathies and medical disorders. The mitochondrial membrane plays a key role in the induction of cellular apoptosis, and its destabilization, as triggered by both intracellular and extracellular stimuli, results in the release of proapoptotic factors into the cytosol. Not surprisingly, proteins from the human immunodeficiency virus type 1 (HIV) have been implicated in exploiting this organelle to promote the targeted depletion of key immune cells, which assists in viral evasion of the immune system and contributes to the characteristic global immunodeficiency observed during progression of disease. Here we review the mechanisms by which HIV affects the mitochondrion, and suggest that various viral-associated genes may directly regulate apoptotic cell death.
TSSC3 overexpression reduces stemness and induces apoptosis of osteosarcoma tumor-initiating cells
Tập 17 - Trang 749-761 - 2012
Yusheng Huang, Huanzi Dai, Qiao-Nan Guo
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents, typically presenting with poor prognosis. Recent studies suggested that tumor initiating cells (T-ICs) drive tumor formation and relapse or metastasis and are relatively resistant to cell death induced by conventional chemo- and radiotherapies. Therefore, the poor prognosis of OS appears to be associated with T-ICs. Here, we enriched T-ICs in OS cell lines and evaluated whether the imprinted gene TSSC3 (tumor-suppressing STF cDNA 3) associated with apoptosis could affect T-ICs in OS. Sarcosphere selection and serial clone-forming unit assays were successfully used to enrich T-ICs from OS cell lines. Enrichment of T-ICs from a malignantly transformed hFOB1.19 osteoblast cell line (MThFOB1.19) indicated that OS T-ICs could originate from differentiated cells, and most of these MThFOB1.19 cells showed stem-like features. TSSC3 was expressed at a low level in T-ICs, while overexpression of TSSC3 could efficiently downregulate the expression of stem cell markers Nanog, Oct4 and Sox2 in T-ICs and decrease the clone formation rate, as well as downregulate tumorigenesis in MThFOB1.19 cells, supporting a suppressive role for TSSC3 in OS T-ICs. Furthermore, overexpression of TSSC3 was found to induce apoptosis of OS T-ICs through increasing cleaved caspase-3 (active form), increasing the release of Cyt c and decreasing pro-caspase-9 (pro-enzyme form), as well as disruption of the mitochondrial membrane potential (ΔΨ). Taken together, our findings provide preliminary evidence that TSSC3 inhibits OS tumorigenicity through reducing stemness and promoting apoptosis of T-ICs. Thus, targeting TSSC3 may be a promising approach to suppressing tumorigenicity in OS.
Role of E-cadherin in the induction of apoptosis of HPV16-positive CaSki cervical cancer cells during multicellular tumor spheroid formation
- 2007
Takeshi Haga, Noboru Uchide, Sharof Tugizov, Joel M. Palefsky
Multicellular tumor spheroids (MCTS) are three dimensional cell culture systems induced by suspension culture. MCTS are widely used in cancer research because of their similarity to solid tumors. CaSki cells are derived from a metastatic cervical cancer containing human papillomavirus 16 (HPV16). Cell death of CaSki cells in MCTS has been previously reported, and our model is used to better characterize the mechanisms of cell death of HPV16-positive keratinocytes. In this study, we found that apoptosis of CaSki cells was induced by suspension culture along with the formation of MCTS after 24 h of incubation. In suspended CaSki cells, monoclonal antibodies blocking E-cadherin function inhibited MCTS formation and suppressed suspension-induced apoptosis in a dose-dependent manner. Western blot for E-cadherin detected upregulation of the authentic 120 kDa band from MCTS of CaSki cells as well as a shorter 100 kDa band. Addition of EGF, whose receptor is known to form a complex with E-cadherin, abrogated apoptosis of suspended CaSki cells in a dose-dependent manner. These findings suggest that E-cadherin-dependent cell–cell contact, directly or indirectly, mediates the signal to undergo apoptosis of CaSki cells during MCTS formation, and thus provides new information on the role of E-cadherin in cervical cancer cell apoptosis.
Contribution of microRNA-30d to the prevention of the thyroid cancer occurrence and progression: mechanism and implications
Tập 28 - Trang 576-593 - 2023
Yanqi Li, Yuan He, Yuan Chen, Zhaocai He, Fan Yang, Chungen Xing
Thyroid cancer is a major endocrine tumor and represents an emerging health problem worldwide. MicroRNAs (miRNAs) have been addressed to participate in the pathogenesis and progression of thyroid cancer. However, it remains largely unknown what functions miR-30d may exert on thyroid cancer. This study, herein, aimed to identify the functional significance and machinery of miR-30d in the progression of thyroid cancer. MiR-30b presented aberrant low expression and ubiquitin-specific protease 22 (USP22) exhibited aberrant high expression in thyroid cancer tissues and cells. The current study proposed the possible machinery that miR-30d could target and negatively regulate USP22. Additionally, USP22 could enhance the stability of SIRT1 by inducing deubiquitination which consequently contributed to FOXO3a deacetylation-induced PUMA repression. Responding to the gain- or loss-of-function of miR-30d and/or USP22, behaviors of thyroid cancer cells were altered. Accordingly, miR-30d inhibited proliferation and promoted apoptosis of thyroid cancer cells by suppressing USP22 through SIRT1/FOXO3a/PUMA axis. The effects of miR-30d and USP22-mediated SIRT1/FOXO3a/PUMA axis on thyroid tumorigenesis were finally validated in murine models. We ultimately confirmed the anti-proliferative and pro-apoptotic effect of miR-30d via suppressing USP22 through in vivo findings. Conclusively, our findings highlight that the occurrence and progression of thyroid cancer can be suppressed by miR-30d-mediated inhibition of USP22 via the SIRT1/FOXO3a/PUMA axis, which provides a attractive therapeutic target for thyroid cancer treatment.
A cellular suicide strategy of plants: vacuole-mediated cell death
- 2006
N. Hatsugai, M. Kuroyanagi, M. Nishimura, I. Hara-Nishimura
Programmed cell death (PCD) occurs in animals and plants under various stresses and during development. Recently, vacuolar processing enzyme (VPE) was identified as an executioner of plant PCD. VPE is a cysteine protease that cleaves a peptide bond at the C-terminal side of asparagine and aspartic acid. VPE exhibited enzymatic properties similar to that of a caspase, which is a cysteine protease that mediates the PCD pathway in animals, although there is limited sequence identity between the two enzymes. VPE and caspase-1 share several structural properties: the catalytic dyads and three amino acids forming the substrate pockets (Asp pocket) are conserved between VPE and caspase-1. In contrast to such similarities, subcellular localizations of these proteases are completely different from each other. VPE is localized in the vacuoles, while caspases are localized in the cytosol. VPE functions as a key molecule of plant PCD through disrupting the vacuole in pathogenesis and development. Cell death triggered by vacuolar collapse is unique to plants and has not been seen in animals. Plants might have evolved a VPE-mediated vacuolar system as a cellular suicide strategy.
TNF-related apoptosis inducing ligand (TRAIL) and its receptors in tumor surveillance and cancer therapy
Tập 7 Số 5 - Trang 449-459 - 2002
Wajant, H., Pfizenmaier, K., Scheurich, P.
TNF-related apoptosis-inducing ligand (TRAIL/APO-2L) is a typical member of the TNF ligand family that induces apoptosis by activating the death receptors TRAIL-R1 and TRAIL-R2. TRAIL has attracted great attention in recent years as a promising anti cancer reagent because recombinant soluble TRAIL derivatives induce apoptosis in a broad range of tumor cells but not or only rarely in non-transformed cells. In this review we will address the putative role of TRAIL in cancer treatment in the light of the emerging importance of TRAIL in tumor surveillance and discuss the molecular basis of the cooperation of TRAIL and chemotherapeutic drugs. In particular, we debate controversial data in the literature concerning the cytotoxicity of different TRAIL derivatives on primary human cells.
Suppressive effect of elongation factor 2 on apoptosis induced by HIV-1 viral protein R
Tập 11 Số 3 - Trang 377-388 - 2006
Stanislav Zelivianski, Dong Liang, M. Chen, Bernard L. Mirkin, Yuqi Zhao
Parallel activation of Ca2+-induced survival and death pathways in cardiomyocytes by sorbitol-induced hyperosmotic stress
Tập 15 - Trang 887-903 - 2010
M. Chiong, V. Parra, V. Eisner, C. Ibarra, C. Maldonado, A. Criollo, R. Bravo, C. Quiroga, A. Contreras, J. M. Vicencio, P. Cea, J. L. Bucarey, J. Molgó, E. Jaimovich, C. Hidalgo, G. Kroemer, S. Lavandero
Hyperosmotic stress promotes rapid and pronounced apoptosis in cultured cardiomyocytes. Here, we investigated if Ca2+ signals contribute to this response. Exposure of cardiomyocytes to sorbitol [600 mosmol (kg water)−1] elicited large and oscillatory intracellular Ca2+ concentration increases. These Ca2+ signals were inhibited by nifedipine, Cd2+, U73122, xestospongin C and ryanodine, suggesting contributions from both Ca2+ influx through voltage dependent L-type Ca2+ channels plus Ca2+ release from intracellular stores mediated by IP3 receptors and ryanodine receptors. Hyperosmotic stress also increased mitochondrial Ca2+ levels, promoted mitochondrial depolarization, reduced intracellular ATP content, and activated the transcriptional factor cyclic AMP responsive element binding protein (CREB), determined by increased CREB phosphorylation and electrophoretic mobility shift assays. Incubation with 1 mM EGTA to decrease extracellular [Ca2+] prevented cardiomyocyte apoptosis induced by hyperosmotic stress, while overexpression of an adenoviral dominant negative form of CREB abolished the cardioprotection provided by 1 mM EGTA. These results suggest that hyperosmotic stress induced by sorbitol, by increasing Ca2+ influx and raising intracellular Ca2+ concentration, activates Ca2+ release from stores and causes cell death through mitochondrial function collapse. In addition, the present results suggest that the Ca2+ increase induced by hyperosmotic stress promotes cell survival by recruiting CREB-mediated signaling. Thus, the fate of cardiomyocytes under hyperosmotic stress will depend on the balance between Ca2+-induced survival and death pathways.