Induction of reactive oxygen species: an emerging approach for cancer therapy

Springer Science and Business Media LLC - Tập 22 Số 11 - Trang 1321-1335 - 2017
Zhengzhi Zou1,2, Haocai Chang2, Haolong Li2, Songmao Wang2
1Joint Laboratory of Laser Oncology with Cancer Center of Sun Yat-sen University, South China Normal University, Guangzhou, China
2MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

Idelchik M, Begley U, Begley TJ, Melendez JA (2017) Mitochondrial ROS control of cancer. Semin Cancer Biol. doi: 10.1016/S1044-579X(17)30098-6

Hendrick E, Peixoto P, Blomme A, Polese C, Matheus N, Cimino J et al (2017) Metabolic inhibitors accentuate the anti-tumoral effect of HDAC5 inhibition. Oncogene 36:4859–4874

Chen P, Luo X, Nie P, Wu B, Xu W, Shi X et al (2017) CQ synergistically sensitizes human colorectal cancer cells to SN-38/CPT-11 through lysosomal and mitochondrial apoptotic pathway via p53-ROS cross-talk. Free Radic Biol Med 104:280–297

Scialo F, Mallikarjun V, Stefanatos R, Sanz A (2013) Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms. Antioxid Redox Signal 19:1953–1969

Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X et al (2011) Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475:231–234

Trachootham D, Zhang H, Zhang W, Feng L, Du M, Zhou Y et al (2008) Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood 112:1912–1922

Chio I, Tuveson DA (2017) ROS in cancer: the burning question. Trends Mol Med 23:411–429

Nakamura S, Nakanishi A, Takazawa M, Okihiro S, Urano S, Fukui K (2016) Ionomycin-induced calcium influx induces neurite degeneration in mouse neuroblastoma cells: analysis of a time-lapse live cell imaging system. Free Radic Res 50:1214–1225

Zou ZZ, Nie PP, Li YW, Hou BX, Rui-Li, Shi XP et al (2017) Synergistic induction of apoptosis by salinomycin and gefitinib through lysosomal and mitochondrial dependent pathway overcomes gefitinib resistance in colorectal cancer. Oncotarget 8:22414–22432

Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 7:504–511

Sumimoto H (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275:3249–3277

Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453-R462

Jeon SM, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485:661–665

Luo X, Yao J, Nie P, Yang Z, Feng H, Chen P et al (2016) FOXM1 promotes invasion and migration of colorectal cancer cells partially dependent on HSPA5 transactivation. Oncotarget 7:26480–26495

Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z et al (2017) m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31:591–606

Park HJ, Carr JR, Wang Z, Nogueira V, Hay N, Tyner AL et al (2009) FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J 28:2908–2918

Liou GY, Doppler H, DelGiorno KE, Zhang L, Leitges M, Crawford HC et al (2016) Mutant KRas-induced mitochondrial oxidative stress in acinar cells upregulates EGFR signaling to drive formation of pancreatic precancerous lesions. Cell Rep 14:2325–2336

Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990

Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K et al (2001) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2:222–228

Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251

Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y et al (2016) ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev 2016:4350965

Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH et al (2010) ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 107:4153–4158

Potter CJ, Pedraza LG, Xu T (2002) Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4:658–665

Ishaq M, Kumar S, Varinli H, Han ZJ, Rider AE, Evans MD et al (2014) Atmospheric gas plasma-induced ROS production activates TNF-ASK1 pathway for the induction of melanoma cancer cell apoptosis. Mol Biol Cell 25:1523–1531

Nadeau PJ, Charette SJ, Landry J (2009) REDOX reaction at ASK1-Cys250 is essential for activation of JNK and induction of apoptosis. Mol Biol Cell 20:3628–3637

Kim S, Lee TJ, Leem J, Choi KS, Park JW, Kwon TK (2008) Sanguinarine-induced apoptosis: generation of ROS, down-regulation of Bcl-2, c-FLIP, and synergy with TRAIL. J Cell Biochem 104:895–907

Wang L, Azad N, Kongkaneramit L, Chen F, Lu Y, Jiang BH et al (2008) The Fas death signaling pathway connecting reactive oxygen species generation and FLICE inhibitory protein down-regulation. J Immunol 180:3072–3080

Devadas S, Zaritskaya L, Rhee SG, Oberley L, Williams MS (2002) Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression. J Exp Med 195:59–70

Gulow K, Kaminski M, Darvas K, Suss D, Li-Weber M, Krammer PH (2005) HIV-1 trans-activator of transcription substitutes for oxidative signaling in activation-induced T cell death. J Immunol 174:5249–5260

Jin X, Song L, Liu X, Chen M, Li Z, Cheng L et al (2014) Protective efficacy of vitamins C and E on p,p’-DDT-induced cytotoxicity via the ROS-mediated mitochondrial pathway and NF-kappaB/FasL pathway. PLoS ONE 9:e113257

Faris M, Latinis KM, Kempiak SJ, Koretzky GA, Nel A (1998) Stress-induced Fas ligand expression in T cells is mediated through a MEK kinase 1-regulated response element in the Fas ligand promoter. Mol Cell Biol 18:5414–5424

Liu Y, Borchert GL, Surazynski A, Hu CA, Phang JM (2006) Proline oxidase activates both intrinsic and extrinsic pathways for apoptosis: the role of ROS/superoxides, NFAT and MEK/ERK signaling. Oncogene 25:5640–5647

Dewangan J, Tandon D, Srivastava S, Verma AK, Yapuri A, Rath SK (2017) Novel combination of salinomycin and resveratrol synergistically enhances the anti-proliferative and pro-apoptotic effects on human breast cancer cells. Apoptosis. doi: 10.1007/s10495-017-1394-y

Madesh M, Hajnoczky G (2001) VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155:1003–1015

Queiroga CS, Almeida AS, Martel C, Brenner C, Alves PM, Vieira HL (2010) Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis. J Biol Chem 285:17077–17088

Zuo Y, Xiang B, Yang J, Sun X, Wang Y, Cang H et al (2009) Oxidative modification of caspase-9 facilitates its activation via disulfide-mediated interaction with Apaf-1. Cell Res 19:449–457

Katoh I, Tomimori Y, Ikawa Y, Kurata S (2004) Dimerization and processing of procaspase-9 by redox stress in mitochondria. J Biol Chem 279:15515–15523

Luanpitpong S, Chanvorachote P, Stehlik C, Tse W, Callery PS, Wang L et al (2013) Regulation of apoptosis by Bcl-2 cysteine oxidation in human lung epithelial cells. Mol Biol Cell 24:858–869

Li D, Ueta E, Kimura T, Yamamoto T, Osaki T (2004) Reactive oxygen species (ROS) control the expression of Bcl-2 family proteins by regulating their phosphorylation and ubiquitination. Cancer Sci 95:644–650

Luanpitpong S, Chanvorachote P, Nimmannit U, Leonard SS, Stehlik C, Wang L et al (2012) Mitochondrial superoxide mediates doxorubicin-induced keratinocyte apoptosis through oxidative modification of ERK and Bcl-2 ubiquitination. Biochem Pharmacol 83:1643–1654

Zou Z, Yuan Z, Zhang Q, Long Z, Chen J, Tang Z et al (2012) Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy 8:1798–1810

Zhao Y, Qu T, Wang P, Li X, Qiang J, Xia Z et al (2016) Unravelling the relationship between macroautophagy and mitochondrial ROS in cancer therapy. Apoptosis 21:517–531

Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2008) Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15:171–182

Tripathi DN, Zhang J, Jing J, Dere R, Walker CL (2016) A new role for ATM in selective autophagy of peroxisomes (pexophagy). Autophagy 12:711–712

Byun YJ, Kim SK, Kim YM, Chae GT, Jeong SW, Lee SB (2009) Hydrogen peroxide induces autophagic cell death in C6 glioma cells via BNIP3-mediated suppression of the mTOR pathway. Neurosci Lett 461:131–135

Pallichankandy S, Rahman A, Thayyullathil F, Galadari S (2015) ROS-dependent activation of autophagy is a critical mechanism for the induction of anti-glioma effect of sanguinarine. Free Radic Biol Med 89:708–720

Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

Song C, Mitter SK, Qi X, Beli E, Rao HV, Ding J et al (2017) Oxidative stress-mediated NFkappaB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy. PLoS ONE 12:e171940

Zhang Y, Su SS, Zhao S, Yang Z, Zhong CQ, Chen X et al (2017) RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun 8:14329

Sun W, Wu X, Gao H, Yu J, Zhao W, Lu JJ et al (2017) Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells. Free Radic Biol Med 108:433–444

Zhou Z, Lu B, Wang C, Wang Z, Luo T, Piao M et al (2017) RIP1 and RIP3 contribute to shikonin-induced DNA double-strand breaks in glioma cells via increase of intracellular reactive oxygen species. Cancer Lett 390:77–90

Chauhan AK, Min KJ, Kwon TK (2017) RIP1-dependent reactive oxygen species production executes artesunate-induced cell death in renal carcinoma Caki cells. Mol Cell Biochem. doi: 10.1007/s11010-017-3052-7

Dixon SJ, Stockwell BR (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10:9–17

Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B et al (2017) Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547:453–457

Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331

Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59:298–308

Liu L, Wei Y, Zhai S, Chen Q, Xing D (2015) Dihydroartemisinin and transferrin dual-dressed nano-graphene oxide for a pH-triggered chemotherapy. Biomaterials 62:35–46

Roh JL, Kim EH, Jang H, Shin D (2017) Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol 11:254–262

Mi YJ, Geng GJ, Zou ZZ, Gao J, Luo XY, Liu Y et al (2015) Dihydroartemisinin inhibits glucose uptake and cooperates with glycolysis inhibitor to induce apoptosis in non-small cell lung carcinoma cells. PLoS ONE 10:e120426

Hamai A, Caneque T, Muller S, Mai TT, Hienzsch A, Ginestier C et al (2017) An iron hand over cancer stem cells. Autophagy 13:1465–1466

Guo J, Xu B, Han Q, Zhou H, Xia Y, Gong C et al (2017) Ferroptosis: a novel anti-tumor action for cisplatin. Cancer Res Treat. doi: 10.4143/crt.2016.572

Yang Y, Guo R, Tian X, Zhang Z, Zhang P, Li C et al (2017) Synergistic anti-tumor activity of Nimotuzumab in combination with Trastuzumab in HER2-positive breast cancer. Biochem Biophys Res Commun 489:523–527

Santoro V, Jia R, Thompson H, Nijhuis A, Jeffery R, Kiakos K et al (2016) Role of reactive oxygen species in the abrogation of oxaliplatin activity by cetuximab in colorectal cancer. J Natl Cancer Inst 108:v394

Cao S, Xia M, Mao Y, Zhang Q, Donkor PO, Qiu F et al (2016) Combined oridonin with cetuximab treatment shows synergistic anticancer effects on laryngeal squamous cell carcinoma: involvement of inhibition of EGFR and activation of reactive oxygen species-mediated JNK pathway. Int J Oncol 49:2075–2087

Fack F, Espedal H, Keunen O, Golebiewska A, Obad N, Harter PN et al (2015) Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol 129:115–131

Guo XL, Li D, Sun K, Wang J, Liu Y, Song JR et al (2013) Inhibition of autophagy enhances anticancer effects of bevacizumab in hepatocarcinoma. J Mol Med (Berl) 91:473–483

Gautam J, Ku JM, Regmi SC, Jeong H, Wang Y, Banskota S et al (2017) Dual inhibition of NOX2 and receptor tyrosine kinase by BJ-1301 enhances anticancer therapy efficacy via suppression of autocrine stimulatory factors in lung cancer. Mol Cancer Ther. doi: 10.1158/1535-7163

Abdel-Aziz AK, Shouman S, El-Demerdash E, Elgendy M, Abdel-Naim AB (2014) Chloroquine synergizes sunitinib cytotoxicity via modulating autophagic, apoptotic and angiogenic machineries. Chem Biol Interact 217:28–40

Leone A, Roca MS, Ciardiello C, Terranova-Barberio M, Vitagliano C, Ciliberto G et al (2015) Vorinostat synergizes with EGFR inhibitors in NSCLC cells by increasing ROS via up-regulation of the major mitochondrial porin VDAC1 and modulation of the c-Myc-NRF2-KEAP1 pathway. Free Radic Biol Med 89:287–299

Okon IS, Coughlan KA, Zhang M, Wang Q, Zou MH (2015) Gefitinib-mediated reactive oxygen specie (ROS) instigates mitochondrial dysfunction and drug resistance in lung cancer cells. J Biol Chem 290:9101–9110

Shan F, Shao Z, Jiang S, Cheng Z (2016) Erlotinib induces the human non-small-cell lung cancer cells apoptosis via activating ROS-dependent JNK pathways. Cancer Med 5:3166–3175

Orcutt KP, Parsons AD, Sibenaller ZA, Scarbrough PM, Zhu Y, Sobhakumari A et al (2011) Erlotinib-mediated inhibition of EGFR signaling induces metabolic oxidative stress through NOX4. Cancer Res 71:3932–3940

Nie P, Hu W, Zhang T, Yang Y, Hou B, Zou Z (2015) Synergistic induction of Erlotinib-mediated apoptosis by resveratrol in human non-small-cell lung cancer cells by down-regulating survivin and up-regulating PUMA. Cell Physiol Biochem 35:2255–2271

Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43:995–1022

Bonini MG, Siraki AG, Atanassov BS, Mason RP (2007) Immunolocalization of hypochlorite-induced, catalase-bound free radical formation in mouse hepatocytes. Free Radic Biol Med 42:530–540

Hui KF, Lam BH, Ho DN, Tsao SW, Chiang AK (2013) Bortezomib and SAHA synergistically induce ROS-driven caspase-dependent apoptosis of nasopharyngeal carcinoma and block replication of Epstein-Barr virus. Mol Cancer Ther 12:747–758

Yin L, Kufe T, Avigan D, Kufe D (2014) Targeting MUC1-C is synergistic with bortezomib in downregulating TIGAR and inducing ROS-mediated myeloma cell death. Blood 123:2997–3006

Xian M, Cao H, Cao J, Shao X, Zhu D, Zhang N et al (2017) Bortezomib sensitizes human osteosarcoma cells to adriamycin-induced apoptosis through ROS-dependent activation of p-eIF2alpha/ATF4/CHOP axis. Int J Cancer 141:1029–1041

Fan WH, Hou Y, Meng FK, Wang XF, Luo YN, Ge PF (2011) Proteasome inhibitor MG-132 induces C6 glioma cell apoptosis via oxidative stress. Acta Pharmacol Sin 32:619–625

Park S, Park JA, Yoo H, Park HB, Lee Y (2017) Proteasome inhibitor-induced cleavage of HSP90 is mediated by ROS generation and caspase 10-activation in human leukemic cells. Redox Biol 13:470–476

Bhalla S, Balasubramanian S, David K, Sirisawad M, Buggy J, Mauro L et al (2009) PCI-24781 induces caspase and reactive oxygen species-dependent apoptosis through NF-kappaB mechanisms and is synergistic with bortezomib in lymphoma cells. Clin Cancer Res 15:3354–3365

Sholler GS, Currier EA, Dutta A, Slavik MA, Illenye SA, Mendonca MC et al (2013) PCI-24781 (abexinostat), a novel histone deacetylase inhibitor, induces reactive oxygen species-dependent apoptosis and is synergistic with bortezomib in neuroblastoma. J Cancer Ther Res 2:21

Cornago M, Garcia-Alberich C, Blasco-Angulo N, Vall-Llaura N, Nager M, Herreros J et al (2014) Histone deacetylase inhibitors promote glioma cell death by G2 checkpoint abrogation leading to mitotic catastrophe. Cell Death Dis 5:e1435

Karthik S, Sankar R, Varunkumar K, Anusha C, Ravikumar V (2015) Blocking NF-kappaB sensitizes non-small cell lung cancer cells to histone deacetylase inhibitor induced extrinsic apoptosis through generation of reactive oxygen species. Biomed Pharmacother 69:337–344

Hedrick E, Crose L, Linardic CM, Safe S (2015) Histone deacetylase inhibitors inhibit rhabdomyosarcoma by reactive oxygen species-dependent targeting of specificity protein transcription factors. Mol Cancer Ther 14:2143–2153

Miao Z, Yu F, Ren Y, Yang J (2017) d, l-Sulforaphane induces ROS-dependent apoptosis in human gliomablastoma cells by inactivating STAT3 signaling pathway. Int J Mol Sci 18

Hu Y, Zhao C, Zheng H, Lu K, Shi D, Liu Z et al (2017) A novel STAT3 inhibitor HO-3867 induces cell apoptosis by reactive oxygen species-dependent endoplasmic reticulum stress in human pancreatic cancer cells. Anticancer Drugs 28:392–400

Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9:563–575

Wu S, Xing D (2012) Mechanism of mitochondrial membrane permeabilization during apoptosis under photofrin-mediated photodynamic therapy. J Xray Sci Technol 20:363–372

van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ (2017) Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers (Basel) 9(2):E19

Gdovin MJ, Kadri N, Rios L, Holliday S, Jordan Z (2017) Focal photodynamic intracellular acidification as a cancer therapeutic. Semin Cancer Biol 43:147–156

Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P, Krysko DV et al (2013) ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 9:1292–1307

Wei Y, Song J, Chen Q, Xing D (2012) Enhancement of photodynamic antitumor effect with pro-oxidant ascorbate. Lasers Surg Med 44:69–75

McHale AP, Callan JF, Nomikou N, Fowley C, Callan B (2016) Sonodynamic therapy: concept, mechanism and application to cancer treatment. Adv Exp Med Biol 880:429–450

Trendowski M (2014) The promise of sonodynamic therapy. Cancer Metastasis Rev 33:143–160

Misik V, Riesz P (2000) Free radical intermediates in sonodynamic therapy. Ann N Y Acad Sci 899:335–348

Trendowski M (2015) Using the promise of sonodynamic therapy in the clinical setting against disseminated cancers. Chemother Res Pract 2015:316015

Chen H, Gao W, Yang Y, Guo S, Wang H, Wang W et al (2014) Inhibition of VDAC1 prevents Ca(2)(+)-mediated oxidative stress and apoptosis induced by 5-aminolevulinic acid mediated sonodynamic therapy in THP-1 macrophages. Apoptosis 19:1712–1726

Wang H, Yang Y, Chen H, Dan J, Cheng J, Guo S et al (2014) The predominant pathway of apoptosis in THP-1 macrophage-derived foam cells induced by 5-aminolevulinic acid-mediated sonodynamic therapy is the mitochondria-caspase pathway despite the participation of endoplasmic reticulum stress. Cell Physiol Biochem 33:1789–1801

Wang S, Hu Z, Wang X, Gu C, Gao Z, Cao W et al (2014) 5-Aminolevulinic acid-mediated sonodynamic therapy reverses macrophage and dendritic cell passivity in murine melanoma xenografts. Ultrasound Med Biol 40:2125–2133

Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA et al (2013) Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38:225–236

Yi JS, Holbrook BC, Michalek RD, Laniewski NG, Grayson JM (2006) Electron transport complex I is required for CD8+ T cell function. J Immunol 177:852–862

Laniewski NG, Grayson JM (2004) Antioxidant treatment reduces expansion and contraction of antigen-specific CD8+ T cells during primary but not secondary viral infection. J Virol 78:11246–11257

Chaudhri G, Clark IA, Hunt NH, Cowden WB, Ceredig R (1986) Effect of antioxidants on primary alloantigen-induced T cell activation and proliferation. J Immunol 137:2646–2652

Schwindling C, Quintana A, Krause E, Hoth M (2010) Mitochondria positioning controls local calcium influx in T cells. J Immunol 184:184–190

Hehner SP, Breitkreutz R, Shubinsky G, Unsoeld H, Schulze-Osthoff K, Schmitz ML et al (2000) Enhancement of T cell receptor signaling by a mild oxidative shift in the intracellular thiol pool. J Immunol 165:4319–4328

Uzhachenko R, Ivanov SV, Yarbrough WG, Shanker A, Medzhitov R, Ivanova AV (2014) Fus1/Tusc2 is a novel regulator of mitochondrial calcium handling, Ca2+-coupled mitochondrial processes, and Ca2+-dependent NFAT and NF-kappaB pathways in CD4+ T cells. Antioxid Redox Signal 20:1533–1547

Tkachev V, Goodell S, Opipari AW, Hao LY, Franchi L, Glick GD et al (2015) Programmed death-1 controls T cell survival by regulating oxidative metabolism. J Immunol 194:5789–5800

Lysechko TL, Cheung SM, Ostergaard HL (2010) Regulation of the tyrosine kinase Pyk2 by calcium is through production of reactive oxygen species in cytotoxic T lymphocytes. J Biol Chem 285:31174–31184

Aguilo JI, Anel A, Catalan E, Sebastian A, Acin-Perez R, Naval J et al (2010) Granzyme B of cytotoxic T cells induces extramitochondrial reactive oxygen species production via caspase-dependent NADPH oxidase activation. Immunol Cell Biol 88:545–554

Murphy MP, Siegel RM (2013) Mitochondrial ROS fire up T cell activation. Immunity 38:201–202

Gelderman KA, Hultqvist M, Holmberg J, Olofsson P, Holmdahl R (2006) T cell surface redox levels determine T cell reactivity and arthritis susceptibility. Proc Natl Acad Sci U S A 103:12831–12836

Cemerski S, Cantagrel A, Van Meerwijk JP, Romagnoli P (2002) Reactive oxygen species differentially affect T cell receptor-signaling pathways. J Biol Chem 277:19585–19593

Efimova O, Szankasi P, Kelley TW (2011) Ncf1 (p47phox) is essential for direct regulatory T cell mediated suppression of CD4+ effector T cells. PLoS One 6:e16013

Kraaij MD, Koekkoek KM, van der Kooij SW, Gelderman KA, van Kooten C (2013) Subsets of human type 2 macrophages show differential capacity to produce reactive oxygen species. Cell Immunol 284:1–8

Wei J, Zhang M, Zhou J (2015) Myeloid-derived suppressor cells in major depression patients suppress T cell responses through the production of reactive oxygen species. Psychiatry Res 228:695–701

Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32:42–56

Shan M, Qin J, Jin F, Han X, Guan H, Li X et al (2017) Autophagy suppresses isoprenaline-induced M2 macrophage polarization via the ROS/ERK and mTOR signaling pathway. Free Radic Biol Med 110:432–443

Magda D, Miller RA (2006) Motexafin gadolinium: a novel redox active drug for cancer therapy. Semin Cancer Biol 16:466–476

Ray T, Chakrabarti MK, Pal A (2016) Hemagglutinin protease secreted by V. cholerae induced apoptosis in breast cancer cells by ROS mediated intrinsic pathway and regresses tumor growth in mice model. Apoptosis 21:143–154

Pluchino LA, Choudhary S, Wang HC (2016) Reactive oxygen species-mediated synergistic and preferential induction of cell death and reduction of clonogenic resistance in breast cancer cells by combined cisplatin and FK228. Cancer Lett 381:124–132

Ao X, Nie P, Wu B, Xu W, Zhang T, Wang S et al (2016) Decreased expression of microRNA-17 and microRNA-20b promotes breast cancer resistance to taxol therapy by upregulation of NCOA3. Cell Death Dis 7:e2463

Zhu J, Zou Z, Nie P, Kou X, Wu B, Wang S et al (2016) Downregulation of microRNA-27b-3p enhances tamoxifen resistance in breast cancer by increasing NR5A2 and CREB1 expression. Cell Death Dis 7:e2454

Zhang LH, Yang AJ, Wang M, Liu W, Wang CY, Xie XF et al (2016) Enhanced autophagy reveals vulnerability of P-gp mediated epirubicin resistance in triple negative breast cancer cells. Apoptosis 21:473–488

Ledoux S, Yang R, Friedlander G, Laouari D (2003) Glucose depletion enhances P-glycoprotein expression in hepatoma cells: role of endoplasmic reticulum stress response. Cancer Res 63:7284–7290

Terada Y, Ogura J, Tsujimoto T, Kuwayama K, Koizumi T, Sasaki S et al (2014) Intestinal P-glycoprotein expression is multimodally regulated by intestinal ischemia-reperfusion. J Pharm Pharm Sci 17:266–276

Li L, Xu J, Min T, Huang W (2006) Up-regulation of P-glycoprotein expression by catalase via JNK activation in HepG2 cells. Redox Rep 11:173–178

Pandey V, Chaube B, Bhat MK (2011) Hyperglycemia regulates MDR-1, drug accumulation and ROS levels causing increased toxicity of carboplatin and 5-fluorouracil in MCF-7 cells. J Cell Biochem 112:2942–2952

Dayal R, Singh A, Pandey A, Mishra KP (2014) Reactive oxygen species as mediator of tumor radiosensitivity. J Cancer Res Ther 10:811–818

Yu S, Wang L, Cao Z, Gong D, Liang Q, Chen H et al (2017) Anticancer effect of Polyphyllin Iota in colorectal cancer cells through ROS-dependent autophagy and G2/M arrest mechanisms. Nat Prod Res 16:1–4

Sun M, Pan D, Chen Y, Li Y, Gao K, Hu B (2017) Coroglaucigenin enhances the radiosensitivity of human lung cancer cells through Nrf2/ROS pathway. Oncotarget 8:32807–32820

Zhang G, Wang W, Yao C, Ren J, Zhang S, Han M (2017) Salinomycin overcomes radioresistance in nasopharyngeal carcinoma cells by inhibiting Nrf2 level and promoting ROS generation. Biomed Pharmacother 91:147–154