Springer Science and Business Media LLC
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Genetic analysis of central Anatolian grapevine (Vitis vinifera L.) germplasm by simple sequence repeats
Springer Science and Business Media LLC - Tập 16 - Trang 1-11 - 2020
The Anatolian peninsula otherwise known as Asia Minor is considered one of the centers that shaped grape (Vitis spp.) evolution and domestication. This region with diverse ecological conditions also has a long history of viticulture and growing grapes has been a part of the local culture since very old times. However, very little information is available on genetic analysis of Anatolian grape germplasm. This study reports on genetic analyses of 88 grapevine cultivars from Central Anatolia using 17 microsatellite (SSR) loci. The average number of alleles per locus was 9.18, ranging from 5 to 15. The highest heterozygosity rate was obtained for the SSR loci “VVS2” and “VMC2H4.” Genetic distances between populations ranged from 0.056 to 0.207 and two cases of identical, seven cases of homonymous, and nine cases of synonymous grape cultivar groups were identified. Based on comparisons with international Vitis databases, it has been determined that “Moldova-Coarna Neagra” cultivar is synonymous with some Anatolian cultivars. In addition, investigation of the genetic diversity of 20 genotypes of Anatolian wild germplasm revealed a higher level of genetic diversity in wild populations than in cultivated ones at the studied microsatellite loci. The results reported here should not only contribute towards better management of the grape germplasm of the region but also provide new insights into grape domestication.
Phylogeny of Castanea (Fagaceae) based on chloroplast trnT-L-F sequence data
Springer Science and Business Media LLC - Tập 2 - Trang 132-139 - 2006
Species in the genus Castanea are widely distributed in the deciduous forests of the Northern Hemisphere from Asia to Europe and North America. They show floristic similarity but differences in chestnut blight resistance especially among eastern Asian and eastern North American species. Phylogenetic analyses were conducted in this study using sequences of three chloroplast noncoding trnT-L-F regions. The trnT-L region was found to be the most variable and informative region. The highest proportion of parsimony informative sites, more and larger indels, and higher pairwise distances between taxa were obtained at trnT-L than at the other two regions. The high A+T values (74.5%) in the Castanea
trnT-L region may explain the high proportion of transversions found in this region where as comparatively lower A+T values were found in the trnL intron (68.35%) and trnL-F spacer (70.07%) with relatively balanced numbers of transitions and transversions. The genus Castanea is supported as a monophyletic clade, while the section Eucastanon is paraphyletic. C. crenata is the most basal clade and sister to the remainder of the genus. The three Chinese species of Castanea are supported as a single monophyletic clade, whose sister group contains the North American and European species. There is consistent but weak support for a sister–group relationship between the North American species and European species.
Gene flow between vicariant tree species: insights into savanna-forest evolutionary relationships
Springer Science and Business Media LLC - Tập 13 - Trang 1-15 - 2017
Studying the genetic structure of vicariant species (i.e., closely related species that occupy ecologically distinct yet adjacent habitats) can shed light on the evolution and divergence of species with different ecological requirements. A previous phylogeographic study identified chloroplast DNA haplotype sharing between two vicariant tree species, one from forest (Hymenaea courbaril) and one from savanna (H. stigonocarpa) habitats. These species co-occur in the Brazilian Cerrado, a biome that encompasses forest patches and riverine forests within a savanna matrix. In order to investigate the evolutionary processes involved in the genetic divergence of these trees, we used nuclear microsatellite markers, statistical methods including approximate Bayesian computation (ABC), and leaf morphology to analyze neighboring and distant populations. Bayesian analysis revealed admixture between the species. ABC analysis supported the scenarios with the occurrence of gene flow between species during the Last Glacial Maximum or from the Holocene to the present, when compared to alternative scenarios of no gene flow or constant gene flow since divergence. However, putative hybrids did not exhibit intermediate leaflet morphology, which could be related to distinct selective pressures maintaining species integrity even in the face of gene flow. Our results suggest that despite morphological differences between savanna and forest species, interspecific barriers to gene flow might not be fully developed between vicariant tree species and that interspecific hybridization in trees from Cerrado biome may be an underdiagnosed process.
SNP markers trace familial linkages in a cloned population of Pinus taeda—prospects for genomic selection
Springer Science and Business Media LLC - Tập 8 - Trang 1307-1318 - 2012
Advances in DNA sequencing technology have made possible the genotyping of thousands of single-nucleotide polymorphism (SNP) markers, and new methods of statistical analysis are emerging to apply these advances in plant breeding programs. We report the utility of markers for prediction of breeding values in a forest tree species using empirical genotype data (3,406 polymorphic SNP loci). A total of 526 Pinus taeda L. clones tested widely in field trials were phenotyped at age 5 years. Only 149 clones from 13 full-sib crosses were genotyped. Markers were fit simultaneously to predict marker additive and dominance effects. Subsets of the 149 genotyped clones were used to train a model using all markers. Cross-validation strategies were followed for the remaining subset of genotyped individuals. The accuracy of genomic estimated breeding values ranged from 0.61 to 0.83 for wood lignin and cellulose content, and from 0.30 to 0.68 for height and volume traits. The accuracies of predictions based on markers were comparable with the accuracies based on pedigree. Because of the small number of SNP markers used and the relatively small population size, we suggest that observed accuracies in this study trace familial linkage rather than historical linkage disequilibrium with trait loci. Prediction accuracies of models that use only a subset of markers were generally comparable with the accuracies of the models using all markers, regardless of whether markers are associated with the phenotype. The results suggest that using SNP loci for selection instead of phenotype is efficient under different relative lengths of the breeding cycle, which would allow cost-effective applications in tree breeding programs. Prospects for applications of genomic selection to P. taeda breeding are discussed.
Genome-wide association study (GWAS) for stem height increment in oil palm (Elaeis guineensis) germplasm using SNP markers
Springer Science and Business Media LLC - Tập 15 - Trang 1-8 - 2019
Oil palm germplasms belonging to four African countries were used in GWAS for stem height increment. Till now, there has been no report available on GWAS study of African oil palm germplasm using single-nucleotide polymorphisms (SNPs) by genotyping by sequencing (GBS) method for height increment. GBS generated a total of 325 million reads covering 50.78 Gb of sequence data, with an average of 3.4 million reads per sample. For the final dataset, we were able to retain 4031 SNPs across the 96 genotypes. The range of height increment varied from 11.43 to 58.21 cm at an average of 29.19 cm. Association mapping resulted in identification of five significant quantitative trait loci (QTLs) on chromosome 6, 7, and 9. Interestingly, three QTLs located on chromosome 7 itself, while one each on chromosome 6 and 9 at a P value of < 0.00001. Out of the five QTLs, qtlH7.1 on chromosome 7 was found to be highly significant which explained a phenotypic variance of 15% at a P of 2 × 10−5. The blast results of qtlH7.1 showed that it was found to be more similar to oil palm B3 domain containing protein (LOC 105043719) transcript variant X3, mRNA. The B3 domain containing proteins consisted of families like auxin response factors (ARFs) and abscisic acid insensitive 3 (ABI3). These results showed that qtlH7.1 might be playing an important role in stem height increment. The QTLs identified in the present study could be used in selection of oil palm germplasm for low height increment.
Quantitative trait loci controlling vegetative propagation traits mapped in European pear (Pyrus communis L.)
Springer Science and Business Media LLC - Tập 13 - Trang 1-12 - 2017
The ease of vegetative propagation by hardwood cuttings is a critical trait for consideration by breeders of woody perennial rootstocks. This is especially so for Pyrus, because most Pyrus rootstock are known to be difficult to propagate. This report presents progress on the identification of loci controlling rooting of hardwood cuttings in European pear (Pyrus communis L.). Quantitative trait loci (QTLs) controlling the development of adventitious roots on hardwood cuttings were identified in both parents of a mapping population developed by crossing “Old Home” and “Louise Bonne de Jersey,” with the goal of investigating the genetic control of several rootstock related traits, which would be useful for rootstock breeding. A QTL for root development was identified on chromosome 7, co-located in both parents and exhibiting male and female additive and dominance effects. These results will assist in developing genetic markers that can be utilized by rootstock breeders for marker-assisted selection for this complex trait.
Divergence amid recurring gene flow: complex demographic histories for two North American pine species (Pinus pungens and P. rigida) fit growing expectations among forest trees
Springer Science and Business Media LLC - Tập 18 Số 5 - 2022
The role of Schmidt ‘Antonovka’ in apple scab resistance breeding
Springer Science and Business Media LLC - - 2012
Diversity in the breadfruit complex (Artocarpus, Moraceae): genetic characterization of critical germplasm
Springer Science and Business Media LLC - Tập 11 - Trang 1-26 - 2015
Breadfruit (Artocarpus altilis, Moraceae) is a traditional staple crop in Oceania and has been introduced throughout the tropics. This study examines important germplasm collections of breadfruit and its closest wild relatives and aims to (1) characterize genetic diversity, including identification of unknown and duplicate accessions, (2) evaluate genetic structure and hybridization within the breadfruit complex, and (3) compare utility of microsatellite markers to previously reported amplified fragment length polymorphism (AFLP) and isozyme markers in differentiating among cultivars. Data for 19 microsatellite loci were collected for 349 individuals (representing 255 accessions) including breadfruit (A. altilis), two wild relatives (Artocarpus camansi and Artocarpus mariannensis), and putative hybrids (A. altilis × A. mariannensis). Accessions were of mixed ploidy and regional origin, but predominantly from Oceania. Microsatellite loci collectively had a polymorphic information content (PIC) of 0.627 and distinguished 197 unique genotypes sorted into 129 different lineages, but a single genotype accounts for 49 % of all triploid breadfruit examined. Triploid hybrids and diploid A. altilis exhibited the highest levels of diversity as measured by allele number and gene diversity. Most accessions (75 %) of unknown origin matched either a known genotype or lineage group in the collection. Putative hybrids all had genetic contributions from A. mariannensis but ranged in the level of genetic contribution from A. altilis. Microsatellite markers were found to be more informative than isozyme markers and slightly less informative, with regard to accession discrimination, than AFLP markers. This set of microsatellite markers and the dataset presented here will be valuable for breadfruit germplasm management and conservation.
Presence of defeated qualitative resistance genes frequently has major impact on quantitative resistance to Melampsora larici-populina leaf rust in P. × interamericana hybrid poplars
Springer Science and Business Media LLC - Tập 3 Số 3 - Trang 261-274 - 2007
Qualitative resistance to Melampsora larici-populina leaf rust inherited from North American species Populus deltoides did not allow for durable control of this pathogen in interspecific hybrid cultivars. Despite significant levels of strain-specificity, quantitative resistance would exert lower selection pressures on the pathogen populations, and hence could be more durable. Previous studies restricted to a large P. × interamericana (i.e., P. deltoides × Populus trichocarpa) F1 family revealed that the presence of R1, a segregating defeated qualitative resistance gene inherited from P. deltoides, had major beneficial effects on quantitative resistance. The present study was based on 14 F1 families from a 4 × 5 P. deltoides × P. trichocarpa factorial mating design where at least four defeated qualitative resistances segregate 1:1. Even though quantitative resistance assessments were conducted in the laboratory with a M. larici-populina strain able to overcome these qualitative resistances, their presence had a significant effect on the mean level and on the genetic variability for quantitative resistance. One unprecedented result is the identification of a defeated qualitative resistance which presence is associated with lower levels of quantitative resistance. Possible inferences on the nature of the genetic relationship between both resistance types are discussed.
Tổng số: 1,095
- 1
- 2
- 3
- 4
- 5
- 6
- 10