An efficient and reproducible protocol for production of AFLP markers in tree genomes using fluorescent capillary detection

Springer Science and Business Media LLC - Tập 8 - Trang 925-931 - 2011
Rodrigo Hasbún1,2, Carolina Iturra1, Priscila Moraga2, Pamela Wachtendorff1, Pamela Quiroga2, Sofía Valenzuela2,3
1Centro de Biotecnología, Genómica Forestal S.A., Concepción, Chile
2Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
3Centro de Biotecnología, Universidad de Concepción, Concepción, Chile

Tóm tắt

An optimized protocol for the development and discovery of polymorphic AFLP markers in tree species is described. The protocol was optimized for the production of fluorescently labeled PCR products and analysis using a capillary sequencer. This approach has been demonstrated to be efficient and reproducible for tree species with complex genomes. The most important modification was in the selective amplification step. Instead of using a traditional step down PCR, a fixed and higher annealing temperature was employed, improving the reproducibility and sensitivity of the protocol. The levels of polymorphisms detected with the optimized protocol on three woody species are in agreement with those previously reported in the literature for tree species.

Tài liệu tham khảo

Abedinia M, Henry RJ, Blakeney AB, Lewin LG (2000) Accessing genes in the tertiary gene pool of rice by direct introduction of total DNA from Zizania palustris (Wild Rice). Plant Mol Biol Rep 18:133–138 Bennett MD, Leitch IJ (2010) Plant DNA C-values database (release 5.0, Dec. 2010). http://www.kew.org/cvalues/. Accessed 02 Aug 2011 Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914 Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273 Busch JD, Miller MP, Paxton EH, Sogge MK, Keim P (2000) Genetic variation in the endangered southwestern willow flycatcher. Auk 117:586–595 Cervera MT, Remington D, Frigerio J-M, Storme V, Ivens B, Boerjan W, Plomion C (2000) Improved AFLP analysis of tree species. Can J Forest Res 30:1608–1616 Colbeck G, Gibbs H, Marra P, Hobson K, Webster M (2008) Phylogeography of a widespread North American migratory songbird (Setophaga ruticilla). J Heredity 99:453–463 Gonçalves MM, Lemos MVF, Galetti PM Jr, Freitas PD, Neto MAAF (2005) Fluorescent amplified fragment length polymorphism (fAFLP) analyses and genetic diversity in Litopenaeus vannamei (Penaeidae). Genet Mol Biol 28:267–270 Grundt HH, Kjølner S, Borgen L, Rieseberg LH, Brochmann C (2006) High biological species diversity in the arctic flora. PNAS 103:972–975 Hartl L, Seefelder S (1998) Diversity of selected hop cultivars detected by fluorescent AFLPs. TAG 96:112–116 Herrera C, Bazaga P (2009) Quantifying the genetic component of phenotypic variation in unpedigreed wild plants: tailoring genomic scan within-population use. Mol Ecol 17:2602–2614 Huang J, Sun M (1999) A modified AFLP with fluorescence-labelled primers and automated DNA sequencer detection for efficient fingerprinting analysis in plants. Biotechnol Tech 13:277–278 Karudapuram S, Larson S (2005) Identification of Hedysarum varieties using amplified fragment length polymorphism on a capillary electrophoresis system. J Biomol Tech 16:316–324 Kim MS, Brunsfeld SJ, McDonald GI, Klopfenstein NB (2003) Effect of white pine blister rust (Cronartium ribicola) and rust-resistance breeding on genetic variation in western white pine (Pinus monticola). Theor Appl Genet 106:1004–1010 Kim Y, Choi H, Kang B (2005) An AFLP-based linkage map of Japanese red pine (Pinus densiflora) using haploid DNA samples of megagametophytes from a single maternal tree. Mol Cells 2:201–209 Kim MS, Richardson BA, McDonald GI, Klopfenstein NB (2011) Genetic diversity and structure of western white pine (Pinus monticola) in North America: a baseline study for conservation, restoration, and addressing impacts of climate change. Tree Genet Genom 7:11–21 Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong JM, Obert JA, Morishige DT, Schlueter SD, Childs KL, Ale M et al (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807 Komulainen P, Brown GR, Mikkonen M, Karhu A, Garcia-Gil MR et al (2003) Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda. Theor Appl Genet 107:667–678 Lerceteau E, Szmidt A (1999) Properties of AFLP markers in inheritance and genetic diversity studies of Pinus sylvestris L. Heredity 82:252–260 Liu MS, Chen FT (2000) Rapid analysis of amplified double-stranded DNA by capillary electrophoresis with laser-induced fluorescence detection. Mol Biotechnol 15:143–146 Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117 Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394 Myburg AA, Remington DL, O’Malley DM, Sederoff RR, Whetten RW (2001) High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer. Biotechniques 30:348–357 Paglia G, Morgante M (1998) PCR-based multiplex DNA fingerprinting techniques for the analysis of conifer genomes. Mol Breed 4:173–177 Parisod C, Bonvin G (2008) Fine-scale genetic structure and marginal processes in an expanding population of Biscutella laevigata L. (Brassicaceae). Heredity 101:536–542 Remington D, Whetten R, Liu B, O’Malley D (1999) Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. TAG 98:1279–1292 Romero G, Adeva C, Battad Z II (2009) Genetic fingerprinting: advancing the frontiers of crop biology research. Phil Sci Lett 2:8–13 Schnell RJ, Olano CT, Campbell RJ, Brown JS (2001) AFLP analysis of genetic diversity within a jackfruit germplasm collection. Sci Hort 91:261–274 Stefenon VM, Gailing O, Finkeldey R (2007) Genetic structure of Araucaria angustifolia (Araucariaceae) populations in Brazil: implications for the in situ conservation of genetic resources. Plant Biol 9:516–525 Terabe S, Monton M, Le Saux T, Imami K (2006) Applications of capillary electrophoresis to high-sensitivity analyses of biomolecules. Pure Appl Chem 78:1057–1067 Ukrainetz NK, Ritland K, Mansfield SD (2008) An AFLP linkage map for Douglas fir based upon multiple full-sib families. Tree Genet Genom 2:181–191 Vendrame WA, Kochert G, Wetzstein HY (1999) AFLP analysis of variation in pecan somatic embryos. Plant Cell Rep 18:853–857 Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP—a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414 Vuylsteke M, Peleman JD, van Eijk MJ (2007) AFLP technology for DNA fingerprinting. Nat Protoc 2:1387–1398 Wolf P, Doche B, Gielly L, Taberlet P (2004) Genetic structure of Rhododendron ferrugineum at a wide range of spatial scales. J Hered 95:301–308 Zhang F, Chena S, Chen F, Fanga W, Lia F (2010) A preliminary genetic linkage map of chrysanthemum (Chrysanthemum morifolium) cultivars using RAPD, ISSR and AFLP markers. Sci Hort 125:422–428