Springer Science and Business Media LLC

Công bố khoa học tiêu biểu

Sắp xếp:  
Oxygen availability affects the synthesis of quorum sensing signal in the facultative anaerobe Novosphingobium pentaromativorans US6-1
Springer Science and Business Media LLC - Tập 105 - Trang 1191-1201 - 2021
Yili Huang, Zejia Lu, Tingting Jiang, Yonghui Zeng, Yanhua Zeng, Baoliang Chen
Bacterial populations rely on quorum sensing (QS) to coordinate their behaviors and are often challenged by the fluctuation in oxygen concentrations in their habitats. Oxygen is a crucial factor that affects bacterial metabolism in multiple ways. However, little is known about whether and how oxygen availability affects QS activities. To fill this gap, we used the facultative anaerobe Novosphingobium pentaromativorans US6-1 as a model system, and observed that the QS signal acyl homoserine-lactones (AHLs) were produced only in anoxic environments, such as biofilm, or liquid medium that initially contained less than 2 mg/L dissolved oxygen, but not in highly oxic environments. Comparative transcriptome analysis revealed that oxygen availability significantly affected the physiological activities in US6-1, including fatty acid metabolism, oxidative phosphorylation, citrate cycle, QS activities, and flagellar assembly. The absence of AHLs in the oxic culture was not due to degradation, but to the very low expression of the AHL synthase gene novI. High concentration of NADH during the middle log phase under static cultivation may be a trigger for AHL synthesis. This is the first report that production of AHLs is coupled with anoxic metabolism in a facultative anaerobe, which extends our knowledge on factors affecting bacterial QS occurrence. • AHL production is anoxic cultivation related. • Oxygen availability affects AHL synthesis by influencing novI expression. • Oxygen availability changes many metabolism activities including NADH production.
Highly selective isolation and characterization of Lipomyces starkeyi mutants with increased production of triacylglycerol
Springer Science and Business Media LLC - Tập 103 - Trang 6297-6308 - 2019
Harutake Yamazaki, Suzuka Kobayashi, Sayaka Ebina, Shiho Abe, Satoshi Ara, Yosuke Shida, Wataru Ogasawara, Katsurou Yaoi, Hideo Araki, Hiroaki Takaku
The oleaginous yeast Lipomyces starkeyi is an attractive organism for the industrial production of lipids; however, the amount of lipid produced by wild-type L. starkeyi is insufficient. The study aims to obtain L. starkeyi mutants that rapidly accumulate large amounts of triacylglycerol (TAG). Mutagenized yeast cells at the early stages of cultivation were subjected to Percoll density gradient centrifugation; cells with increased production of TAG were expected to be enriched in the resultant upper fraction because of their lower density. Among 120 candidates from the upper fractions, five mutants were isolated that accumulated higher amounts of TAG. Moreover, when omitting cells with mucoid colony morphology, 11 objective mutants from 11 candidates from the upper fraction were effectively (100%) isolated. Of total 16 mutants obtained, detailed characterization of five mutants was performed to reveal that five mutants achieved about 1.5–2.0 times TAG concentration (4.7–6.0 g/L) as compared with the wild-type strain (3.6 g/L) at day 5. Among these five mutants, strain E15 was the best for industrial use because only strain E15 showed significantly higher TAG concentration as well as significantly higher degree of lipid to glucose and biomass to glucose yields than the wild-type strain. Thus, Percoll density gradient centrifugation is an effective method to isolate mutant cells that rapidly accumulate large amounts of TAG. It is expected that by repeating this procedure as part of a yeast-breeding program, L. starkeyi mutants suitable for industrial lipid production can be easily and effectively obtained.
Analysis of the role of the gene bipA, encoding the major endoplasmic reticulum chaperone protein in the secretion of homologous and heterologous proteins in black Aspergilli
Springer Science and Business Media LLC - Tập 50 - Trang 447-454 - 1998
P. J. Punt, I. A. van Gemeren, J. Drint-Kuijvenhoven, J. G. M. Hessing, G. M. van Muijlwijk-Harteveld, A. Beijersbergen, C. T. Verrips, C. A. M. J. J. van den Hondel
The function of the endoplasmic-reticulum-localized chaperone binding protein (BiP) in relation to protein secretion in filamentous fungi was studied. It was shown that the overproduction of several homologous and heterologous recombinant proteins by Aspergillus strains induces the expression of bipA, the BiP-encoding gene from Aspergillus niger and Aspergillus awamori. As this result could imply that BiP plays a role in protein overproduction, the effect of modulation of bipA gene expression on protein secretion was studied in several recombinant strains expressing glucoamylase (glaA) fusion genes. For overproduction of BiPA in these strains, extra copies of the bipA gene under the control of an inducible promoter were introduced. To allow analysis of the effect of a decreased bipA expression level on protein secretion, replacement of the wild-type gene for a bipA gene driven by the glaA promoter was attempted. However, this endeavour failed because of the lethality of this replacement. Although the final amount of secreted recombinant protein did not change significantly in strains with increased BiPA levels, increased levels of unprocessed fusion protein were detected in the total protein extracts of these strains.
Influence of redox potential on the anaerobic biotransformation of nitrogen-heterocyclic compounds in anoxic freshwater sediments
Springer Science and Business Media LLC - Tập 41 - Trang 717-724 - 1994
S. M. Liu, W. J. Jones, J. E. Rogers
The potential for degradation of four nitrogen-heterocyclic compounds was investigated in fresh-water sediment slurries maintained under denitrifying, sulfate-reducing, and methanogenic conditions. Pyridine (10 mg/l) was rapidly transformed within 4 weeks under denitrifying conditions but persisted for up to 3 months under sulfate-reducing and methanogenic conditions. No intermediate biotransformation products of pyridine metabolism were detected under denitrifying conditions. Quinoline (10 mg/l) was completely transformed without a lag phase under methanogenic and sulfate-reducing conditions after incubation for 23 and 45 days, respectively. 2-Hydroxyquinoline was produced concomitantly with quinoline transformation under methanogenic and sulfate-reducing conditions. Under denitrifying conditions, less than 23% of the initial concentration of quinoline was transformed after anaerobic incubation for 83 days. Indole, however, was completely removed from sediment slurries under denitrifying, sulfate-reducing, and methanogenic conditions after anaerobic incubation for 18, 27, and 17 days, respectively. Only low amounts of oxindole (2–4 mg/l) accumulated during indole metabolism under methanogenic and denitrifying conditions, but under sulfate-reducing conditions, oxindole accumulation was stoichiometric with indole transformation. No evidence for biotransformation of carbazole was noted for all anaerobic conditions tested.
Aerobic and anaerobic methanotrophic communities in urban landscape wetland
Springer Science and Business Media LLC - Tập 102 - Trang 433-445 - 2017
Sili Chen, Jianfei Chen, Sha Chang, Hao Yi, Dawei Huang, Shuguang Xie, Qingwei Guo
Both aerobic methane-oxidizing bacteria (MOB) and nitrite-dependent anaerobic methane oxidation (n-damo) organisms can be important methane sinks in a wetland. However, the influences of the vegetation type on aerobic MOB and n-damo communities in wetland, especially in constructed wetland, remain poorly understood. The present study investigated the influences of the vegetation type on both aerobic MOB and n-damo organisms in a constructed urban landscape wetland. Sediments were collected from eight sites vegetated with different plant species. The abundance (1.19–3.27 × 107 pmoA gene copies per gram dry sediment), richness (Chao1 estimator = 16.3–81.5), diversity (Shannon index = 2.10–3.15), and structure of the sediment aerobic MOB community were found to vary considerably with sampling site. In contrast, n-damo community abundance (8.74 × 105–4.80 × 106 NC10 16S rRNA gene copies per gram dry sediment) changed slightly with the sampling site. The richness (Chao1 estimator = 1–11), diversity (Shannon index = 0–0.78), and structure of the NC10 16S rRNA gene-based n-damo community illustrated slight site-related changes, while the spatial changes of the pmoA gene-based n-damo community richness (Chao1 estimator = 1–8), diversity (Shannon index = 0–0.99), and structure were considerable. The vegetation type could have a profound impact on the wetland aerobic MOB community and had a stronger influence on the pmoA-based n-damo community than on the NC10 16S-based one in urban wetland. Moreover, the aerobic MOB community had greater abundance and higher richness and diversity than the n-damo community. Methylocystis (type II MOB) predominated in urban wetland, while no known type I MOB species was detected. In addition, the ratio of total organic carbon to total nitrogen (C/N) might be a determinant of sediment n-damo community diversity and aerobic MOB richness.
Improving the drying of Propionibacterium freudenreichii starter cultures
Springer Science and Business Media LLC - Tập 105 - Trang 3485-3494 - 2021
Romain Jeantet, Gwénaël Jan
Propionibacterium freudenreichii is a beneficial food-grade actinobacterium, widely implemented, and thus consumed, in various food products. As the main application, P. freudenreichii is used as a cheese-ripening starter, mostly in hard type cheeses. Indeed, during manufacture of “Swiss-type” cheeses (or opened-body cheeses), the technological process favors propionibacteria growth, as well as the corresponding propionic fermentation. This leads to the characteristic flavor of these cheeses, through the release of short chain fatty acids and through lipolysis, as well as to their specific texture. To fulfil this ripening, massive amounts of propionibacteria are industrially produced, dried and stored, prior to cheese making. Furthermore, P. freudenreichii is commercialized in various probiotic food supplements aiming at preserving intestinal health and comfort, in line with its ability to produce beneficial metabolites (short chain fatty acids, vitamins), as well as immunomodulatory compounds. Other industrial applications of P. freudenreichii include the production of food-grade vitamins of the B group, of trehalose, of conjugated linoleic acid, and of biopreservatives. For these different applications, maintaining survival and activity of propionibacteria during production, drying, storage and finally implementation, is crucial. More widely, maintaining live and active probiotic bacteria represents a challenge as the market for probiotic products increases. Probiotic bacteria are, for a bulk majority, freeze-dried, but spray drying is also more and more considered. Indeed, this process is both continuous and more cost-efficient, as it utilizes less energy compared to freeze-drying; on the other hand, it exposes bacteria to higher heat and oxidative stresses. Apart from process optimization and strain selection, it is possible to enhance the resistance of bacteria by taking advantage of their adaptation capacity. Indeed, P. freudenreichii stress tolerance can be boosted by different pretreatments applied before the drying step, thus considerably increasing its final survival. In particular, adaptation to hyperosmotic conditions improves stress tolerance, while the presence of osmoprotectants may mitigate this improvement. Thermal adaptation also modulates tolerance towards these technological challenges. The composition of the growth medium, including the ratio between the carbohydrates provided and the non-protein nitrogen, plays a key role in driving the accumulation of osmoprotectants. This, in turn, determines P. freudenreichii tolerance towards different stresses, and overall towards both freeze-drying and spray-drying. As an example, the accumulation of trehalose enhances its spray-drying survival, while the accumulation of glycine betaine enhances its freeze-drying survival. Growth of propionibacteria in hyperconcentrated whey was used to trigger multiple stress tolerance acquisition, underpinned by overexpression of key stress protein, accumulation of cytoplasmic storage compounds, and leading to enhanced spray-drying survival. A simplified process, from cultivation to atomization, was developed by using whey as a 2-in-1 medium in which propionibacteria were grown, protected and dried with minimal cell death. This innovative process was then subjected to scaling up at the industrial level. In this aim, a gentle multi-stage drying process offering mild drying conditions by coupling spray drying with belt drying, led to final probiotic survival close to 100% when stress tolerance acquisition was previously implemented. Such innovation opens new avenues for the efficient, cost-effective and sustainable development of new probiotic production technologies, as well as probiotic application in the context of food and feed. • Propionibacteria acquire multi-stress tolerance when grown in hyper-concentrated whey. • Spray drying of osmo-adapted probiotic bacteria is possible with limited cell death. • A two-in-one drying method is developed to grow and dry probiotic bacteria in the same matrix.
Decontaminating surfaces with atomized disinfectants generated by a novel thickness-mode lithium niobate device
Springer Science and Business Media LLC - Tập 102 Số 15 - Trang 6459-6467 - 2018
Monika Kumaraswamy, Sean Collignon, Carter Do, Janie Kim, Victor Nizet, James Friend
Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production
Springer Science and Business Media LLC - Tập 73 Số 4 - Trang 887-894 - 2006
Qingzhao Wang, Xun Chen, Yudi Yang, Xueming Zhao
Batch and continuous cultivation of Anaerobiospirillum succiniciproducens for the production of succinic acid from whey
Springer Science and Business Media LLC - Tập 54 Số 1 - Trang 23-27 - 2000
Pyung Cheon Lee, WG Lee, S. Chul Kwon, Sang Yup Lee, Ho‐Nam Chang
ω3 fatty acid desaturases from microorganisms: structure, function, evolution, and biotechnological use
Springer Science and Business Media LLC - Tập 97 Số 24 - Trang 10255-10262 - 2013
Mingxuan Wang, Haiqin Chen, Zhennan Gu, Hao Zhang, Wei Chen, Yong Q. Chen
Tổng số: 13,374   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1338