Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: current state and perspectives

Springer Science and Business Media LLC - Tập 95 - Trang 1-12 - 2012
Hiroshi Uemura1
1Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

Tóm tắt

Recently, many genes involved in the formation of unsaturated and polyunsaturated fatty acids (PUFAs) were isolated. In most cases, their activities were confirmed by expressing them in the well-studied model organism Saccharomyces cerevisiae because its fatty acid compositions are very simple and it does not contain PUFAs. Taking advantage of its genetic tractability and increasing wealth of accessible data, many groups are attempting to produce various useful fatty acids in the model yeasts, mainly in S. cerevisiae. This review describes typical such examples including a very recent study on the expression of a fatty acid hydroxylase gene in fission yeast Schizosaccharomyces pombe. Furthermore, the impact of the genetically engineered alteration of fatty acid composition on the stress tolerance is presented because unsaturated fatty acids have crucial roles in membrane fluidity and signaling processes. Lastly, recent attempts at increasing lipid content in S. cerevisiae are discussed.

Tài liệu tham khảo

Alexandre H, Rousseaux I, Charpentier C (1994) Ethanol adaptation mechanisms in Saccharomyces cerevisiae. Biotechnol Appl Biochem 20:173–183 Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498:98–103 Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville C (1992) Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258:1353–1355 Attfield PV (1997) Stress tolerance: the key to effective strains of industrial baker's yeast. Nat Biotechnol 15:1351–1357 Beaudoin FL, Michaelson V, Hey SJ, Lewis MJ, Shewry PR, Sayanova O, Napier JA (2000) Heterologous reconstitution in yeast of the polyunsaturated fatty acid biosynthetic pathway. Proc Natl Acad Sci USA 97:6421–6426 Beavan MJ, Charpentier C, Rose AH (1982) Production and tolerance of ethanol in relation to phospholipid fatty acyl composition in Saccharomyces cerevisiae. J Gen Microbiol 128:1447–1455 Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009a) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387 Beopoulos A, Chardot T, Nicaud JM (2009b) Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91:692–696 Bouvier-Nave P, Benveniste P, Oelkers P, Sturley SL, Schaller H (2000) Expression in yeast and tobacco of plant cDNAs encoding acyl-CoA:diacylglycerol acyltransferase. Eur J Biochem 267:85–96 Broun P, Somerville C (1997) Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiol 113:933–942 Broun P, Boddupalli S, Somerville C (1998) A bifunctional oleate 12-hydroxylase: desaturase from Lesquerella fendleri. Plant J 13:201–210 Broun P, Gettner S, Somerville C (1999) Genetic engineering of plant lipids. Annu Rev Nutr 19:197–216 Calvo AM, Gardner HW, Keller NP (2001) Genetic connection between fatty acid metabolism and sporulation in Aspergillus nidulans. J Biol Chem 276:25766–25774 Casey GP, Ingledew WE (1986) Ethanol tolerance of yeasts. CRC Crit Rev Microbiol 13:219–280 Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14 Czabany T, Athenstaedt K, Daum G (2007) Synthesis, storage and degradation of neutral lipids in yeast. Biochim Biophys Acta 1771:299–309 Das UN (2006) Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J 1:420–439 Domergue F, Lerchl J, Zahringer U, Heinz E (2002) Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur J Biochem 269:4105–4113 Domergue F, Abbadi A, Ott C, Zank TK, Zahringer U, Heinz E (2003) Acyl carriers used as substrates by the desaturases and elongases involved in very long-chain polyunsaturated fatty acids biosynthesis reconstituted in yeast. J Biol Chem 278:35115–35126 Dooper MMBW, van Riel B, Graus YMF, M'Rabet L (2003) Dihomo-γ-linolenic acid inhibits tumour necrosis factor-α production by human leucocytes independently of cyclooxygenase activity. Immunology 110:348–357 Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuveglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wesolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430:35–44 Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW, Simons K, Shevchenko A (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci USA 106:2136–2141 Fei W, Shui G, Gaeta B, Du X, Kuerschner L, Li P, Brown AJ, Wenk MR, Parton RG, Yang H (2008) Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 180:473–482 Fei W, Shui G, Zhang Y, Krahmer N, Ferguson C, Kapterian TS, Lin RC, Dawes IW, Brown AJ, Li P, Huang X, Parton RG, Wenk MR, Walther TC, Yang H (2011) A role for phosphatidic acid in the formation of supersized lipid droplets. PLoS Genet 7:e1002201 Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoids biology. Science 294:1871–1875 Galliard T, Stumpf PK (1966) Fat metabolism in higher plants. 30 Enzymatic synthesis of ricinoleic acid by a microsomal preparation from developing Ricinus communis seeds. J Biol Chem 241:5806–5812 Gaspar ML, Aregullin MA, Jesch SA, Nunez LR, Villa-García M, Henry SA (2007) The emergence of yeast lipidomics. Biochim Biophys Acta 1771:241–254 Heinz E (1993) Biosynthesis of polyunsaturated fatty acids. In: Moore TS (ed) Lipid metabolism in plants. CRC, Boca Raton, pp 33–89 Hobbs DH, Lu C, Hills MJ (1999) Cloning of a cDNA encoding diacylglycerol acyltransferase from Arabidopsis thaliana and its functional expression. FEBS Lett 452:145–149 Holic R, Yazawa H, Kumagai H, Uemura H (2012) Engineered high content of ricinoleic acid in fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotech. doi:10.1007/s00253-012-3959-6 Horrobin DF (2000) Essential fatty acid metabolism and its modification in atopic eczema. Am J Clin Nutr 71(1 Suppl):367S–372S Horrobin DF, Huang YS (1987) The role of linoleic acid and its metabolites in the lowering of plasma cholesterol and the prevention of cardiovascular disease. Int J Cardiol 17:241–255 Huang YS, Chaudhary S, Thurmond JM, Bobik EG Jr, Yuan L, Chan GM, Kirchner SJ, Mukerji P, Knutzon DS (1999) Cloning of delta12- and delta6-desaturases from Mortierella alpina and recombinant production of gamma-linolenic acid in Saccharomyces cerevisiae. Lipids 34:649–659 Huang YS, Pereira SL, Leonard AE (2004) Enzymes for transgenic biosynthesis of long-chain polyunsaturated fatty acids. Biochimie 86:793–798 Inagaki K, Aki T, Fukuda Y, Kawamoto S, Shigeta S, Ono K, Suzuki O (2002) Identification and expression of a rat fatty acid elongase involved in the biosynthesis of C18 fatty acids. Biosci Biotech Biochem 66:613–621 Iversen L, Fogh K, Bojesen G, Kragballe K (1991) Linoleic acid and dihomogammalinolenic acid inhibit leukotriene B4 formation and stimulate the formation of their 15-lipoxygenase products by human neutrophils in vitro. Evidence of formation of antiinflammatory compounds. J Inflamm Res 33:286–291 Iversen L, Fogh K, Kragballe K (1992) Effect of dihomogammalinolenic acid and its 15-lipoxygenase metabolite on eicosanoid metabolism by human mononuclear leukocytes in vitro: selective inhibition of the 5-lipoxygenase pathway. Arch Dermatol Res 284:222–226 Jako C, Kumar A, Wei Y, Zou Y, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874 Jones RP (1989) Biological principles for the effects of ethanol. Enzyme Microb Technol 11:130–153 Kahler CP, Du Plooy WJ (1998) Effect of gammalinolenic acid, dihomogammalinolenic acid, ascorbyl-6-gammalinolenic acid, and ascorbyl-6-dihomo gammalinolenic acid on histamine- and methacholine-induced contraction of the isolated guinea pig tracheal chain. Prostag Leukotr Ess 58:327–331 Kainou K, Kamisaka Y, Kimura K, Uemura H (2006) Isolation of Δ12 and ω3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic and α-linolenic acids in Saccharomyces cerevisiae. Yeast 23:605–612 Kajiwara S, Shirai A, Fujii T, Toguri T, Nakamura K, Ohtaguchi K (1996) Polyunsaturated fatty acid biosynthesis in Saccharomyces cerevisiae: expression of ethanol tolerance and the FAD2 gene from Arabidopsis thaliana. Appl Environ Microbiol 62:4309–4313 Kajiwara S, Aritomi T, Suga K, Ohtaguchi K, Kobayashi O (2000) Overexpression of the OLE1 gene enhances ethanol fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:568–574 Kamisaka Y, Noda N, Tomita N, Kimura K, Kodaki T, Hosaka K (2006) Identification of genes affecting lipid content using transposon mutagenesis in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 70:646–53 Kamisaka Y, Tomita N, Kimura K, Kainou K, Uemura H (2007) DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Δsnf2 disruptant of Saccharomyces cerevisiae. Biochem J 408:61–68 Kim HS, Kim NR, Choi W (2011) Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation. Biotechnol Lett 33:509–515 Kimura K, Tomita N, Uemura H, Aki T, Ono K, Kamisaka Y (2009) Improvement of stearidonic acid production in oleaginous Saccharomyces cerevisiae. Biosci Biotechnol Biochem 73:1447–1449 Kumar R, Wallis JG, Skidmore C, Browse J (2006) A mutation in Arabidopsis cytochrome b5 reductase identified by high-throughput screening differentially affects hydroxylation and desaturation. Plant J 48:920–932 Leonard AE, Kelder B, Bobik EG, Chuang LT, Lewis CJ, Kopchick JJ, Mukerji P, Huang YS (2002) Identification and expression of mammalian long-chain PUFA elongation enzymes. Lipids 37:733–740 Leonard AE, Pereira SL, Sprecher H, Huang YS (2004) Elongation of long-chain fatty acids. Prog Lipid Res 43:36–54 Li M, Ou X, Yang X, Guo D, Qian X, Xing L, Li M (2011) Isolation of a novel C18-Δ9 polyunsaturated fatty acid specific elongase gene from DHA-producing Isochrysis galbana H29 and its use for the reconstitution of the alternative Δ8 pathway in Saccharomyces cerevisiae. Biotechnol Lett 33:1823–1830 Lloyd D, Morrell S, Carlsen HN, Degn H, James PE, Rowlands CC (1993) Effects of growth with ethanol on fermentation and membrane fluidity of Saccharomyces cerevisiae. Yeast 9:825–833 Lu C, Fulda M, Wallis JG, Browse J (2006) A high-throughput screen for genes from castor that boost hydroxy fatty acid accumulation in seed oils of transgenic Arabidopsis. Plant J 45:847–856 Ma M, Liu ZL (2010) Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87:829–845 Macartney A, Maresca B, Cossins AR (1994) Acyl-CoA desaturases and the adaptive regulation of membrane lipid composition. In: Cossins AR (ed) Temperature adaptation of biological membranes. Portland, London, pp 129–139 Meesapyodsuk D, Qiu X (2008) An oleate hydroxylase from the fungus Claviceps purpurea: cloning, functional analysis, and expression in Arabidopsis. Plant Physiol 147:1325–1333 Meng X, Yang J, Cao Y, Li L, Jiang X, Xu X, Liu W, Xian M, Zhang Y (2011) Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms. J Ind Microbiol Biotechnol 38:919–925 Meyer A, Kirsch H, Domergue F, Abbadi A, Sperling P, Bauer J, Cirpus P, Zank TK, Moreau H, Roscoe TJ, Zähringer U, Heinz E (2004) Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesis. J Lipid Res 45:1899–1909 Mills SC, Windsor AC, Knight SC (2005) The potential interactions between polyunsaturated fatty acids and colonic inflammatory processes. Clin Exp Immunol 142:216–228 Mishra P, Prasad R (1989) Relationship between ethanol tolerance and fatty acyl composition of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 30:294–298 Mitchell AG, Martin CE (1995) A novel cytochrome b5-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae delta-9 fatty acid desaturase. J Biol Chem 270:29766–29772 Mitchell AG, Martin CE (1997) Fah1p, a Saccharomyces cerevisiae cytochrome b5 fusion protein, and its Arabidopsis thaliana homolog that lacks the cytochrome b5 domain both function in the alpha-hydroxylation of sphingolipid-associated very long chain fatty acids. J Biol Chem 272:28281–28288 Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438 Napier JA, Sayanova O (2005) The production of very-long-chain PUFA biosynthesis in transgenic plants: towards a sustainable source of fish oils. Proc Nutr Soc 64:387–393 Napier JA, Michaelson LV, Stobart AK (1999) Plant desaturases: harvesting the fat of the land. Curr Opin Plant Biol 2:121–122 Oh CS, Toke DA, Mandala S, Martin CE (1997) ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem 272:17376–17384 Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158 Opekarova M, Tanner W (2003) Specific lipid requirements of membrane proteins; a putative bottleneck in heterologous expression. Biochim Biophys Acta 1610:11–22 Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64:34–50 Oura T, Kajiwara S (2004) Saccharomyces kluyveri FAD3 encodes an omega3 fatty acid desaturase. Microbiology 150:1983–1990 Parker-Barnes JM, Das T, Bobik E, Leonard AE, Thurmond JM, Chaung LT, Huang YS, Mukerji P (2000) Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proc Natl Acad Sci USA 97:8284–8289 Passorn S, Laoteng K, Rachadawong S, Tanticharoen M, Cheevadhanarak S (1999) Heterologous expression of Mucor rouxii delta(12)-desaturase gene in Saccharomyces cerevisiae. Biochem Biophys Res Commun 263:47–51 Pereira SL, Leonard AE, Mukerji P (2003) Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins Leukot Essent Fat Acids 68:97–106 Pereira SL, Leonard AE, Huang YS, Chuang LT, Mukerji P (2004) Identification of two novel microalgal enzymes involved in the conversion of the omega3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid. Biochem J 384:357–366 Petrini GA, Altabe SG, Uttaro AD (2004) Trypanosoma brucei oleate desaturase may use a cytochrome b5-like domain in another desaturase as an electron donor. Eur J Biochem 271:1079–1086 Ratledge C (1993) Single cell oils—have they a biotechnological future? Trends Biotechnol 11:278–284 Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815 Ratledge C, Evans CT (1989) Lipids and their metabolism. In: Rose AH, Harrison JS (eds) The yeast, 2nd edn. Academic, London, pp 367–455 Ratledge C, Wilkinson SG (1993) Microbial lipids volume 1. Academic, London Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51 Rodríguez-Vargas S, Sánchez-García A, Martínez-Rivas JM, Prieto JA, Randez-Gil F (2007) Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl Environ Microbiol 73:110–116 Rotondo D, Earl CR, Laing KJ, Kaimakamis D (1994) Inhibition of cytokine-stimulated thymic lymphocyte proliferation by fatty acids: the role of eicosanoids. Biochim Biophys Acta 1223:185–194 Sakuradani E, Kobayashi M, Ashikari T, Shimizu S (1999) Identification of Delta12-fatty acid desaturase from arachidonic acid-producing Mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochem 261:812–820 Sakuradani E, Abe T, Iguchi K, Shimizu S (2005) A novel fungal omega3-desaturase with wide substrate specificity from arachidonic acid-producing Mortierella alpina 1 S-4. Appl Microbiol Biotechnol 66:648–654 Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525 Smith MA, Moon H, Chowrira G, Kunst L (2003) Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana. Planta 217:507–516 Sorger D, Daum G (2003) Triacylglycerol biosynthesis in yeast. Appl Microbiol Biotechnol 61:289–299 Sperling P, Schmidt H, Heinz E (1995) A cytochrome-b5-containing fusion protein similar to plant acyl lipid desaturases. Eur J Biochem 232:798–805 Stone KJ, Willis AL, Hart WM, Kirtland SJ, Kernoff PB, McNicol GP (1979) The metabolism of dihomo-gamma-linolenic acid in man. Lipids 14:174–180 Stukey JE, McDonough VM, Martin CE (1989) Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae. J Biol Chem 264:16537–16544 Tamura Y, Yoshida Y, Sato R, Kumaoka H (1976) Fatty acid desaturase system of yeast microsomes. Involvement of cytochrome b5-containing electron-transport chain. Arch Biochem Biophys 175:284–294 Tan L, Meesapyodsuk D, Qiu X (2011) Molecular analysis of ∆6 desaturase and ∆6 elongase from Conidiobolus obscurus in the biosynthesis of eicosatetraenoic acid, a ω3 fatty acid with nutraceutical potentials. Appl Microbiol Biotechnol 90:591–601 Tang W, Zhang S, Wang Q, Tan H, Zhao ZK (2009) The isocitrate dehydrogenase gene of oleaginous yeast Lipomyces starkeyi is linked to lipid accumulation. Can J Microbiol 55:1062–1069 Thomas DS, Hossack JA, Rose AH (1978) Plasma-membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Arch Microbiol 117:239–245 Tian HC, Zhou J, Qiao B, Liu Y, Xia JM, Yuan YJ (2010) Lipidome profiling of Saccharomyces cerevisiae reveals pitching rate-dependent fermentative performance. Appl Microbiol Biotechnol 87:1507–1516 Tocher DR, Leaver MJ, Hodgson PA (1998) Recent advances in the biochemistry and molecular biology of fatty acyl desaturases. Prog Lipid Res 37:73–117 Uttaro AD (2006) Biosynthesis of polyunsaturated fatty acids in lower eukaryotes. IUBMB Life 58:563–571 van de Loo FJ, Broun P, Turner S, Somerville C (1995) An oleate 12-hydroxylase from Ricinus communis L is a fatty acyl desaturase homolog. Proc Natl Acad Sci USA 92:6743–6747 Vance DE, Vance JE (2002) Biochemistry of lipids, lipoproteins and membranes, 4th edn. Elsevier, Amsterdam Vassilopoulos D, Zurier RB, Rossetti RG, Tsokos GC (1997) Gammalinolenic acid and dihomogammalinolenic acid suppress the CD3-mediated signal transduction pathway in human T cells. Clin Immunol Immunopath 83:237–244 Warude D, Joshi K, Harsulkar A (2006) Polyunsaturated fatty acids: biotechnology. Crit Rev Biotechnol 26:83–93 Watanabe K, Oura T, Sakai H, Kajiwara S (2004) Yeast Delta 12 fatty acid desaturase: gene cloning, expression, and function. Biosci Biotechnol Biochem 68:721–727 Williams WV, Rosenbaum H, Zurier RB (1996) Effects of unsaturated fatty acids on expression of early response genes in human T lymphocytes. Pathobiology 64:27–31 Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O'Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schafer M, Muller-Auer S, Gabel C, Fuchs M, Dusterhoft A, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dreano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A, Thode G, Daga RR, Cruzado L, Jimenez J, Sánchez M, del Rey F, Benito J, Domínguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D, Barrell BG, Nurse P (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880 Yadav NS, Wierzbicki A, Aegerter M, Caster CS, Perez-Grau L, Kinney AJ, Hitz WD, Booth JR Jr, Schweiger B, Stecca KL, Allen SM, Blackwell M, Reiter RS, Carlson TJ, Russel SH, Feldmann KA, Pierce J, Browse J (1993) Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol 103:467–476 Yazawa H, Iwahashi H, Kamisaka Y, Kimura K, Aki K, Ono T, Uemura H (2007a) Heterologous production of dihomo-gamma-linolenic acid in yeast Saccharomyces cerevisiae. Appl Environ Microbiol 73:6965–6971 Yazawa H, Iwahashi H, Uemura H (2007b) Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae. Yeast 24:551–560 Yazawa H, Iwahashi H, Kamisaka Y, Kimura K, Uemura H (2009) Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance. Yeast 26:167–184 Yazawa H, Iwahashi H, Kamisaka Y, Kimura K, Uemura H (2010) Improvement of polyunsaturated fatty acids synthesis by the co-expression of CYB5 with desaturase genes in Saccharomyces cerevisiae. Appl Microbiol Biotech 87:2185–2193 Yazawa H, Kamisaka Y, Kimura K, Yamaoka M, Uemura H (2011) Efficient accumulation of oleic acid in Saccharomyces cerevisiae caused by expression of rat elongase 2 gene (rELO2) and its contribution to tolerance to alcohols. Appl Microbiol Biotech 91:1593–1600 Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr (2008) Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49:2283–2301 You KM, Rosenfield CL, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69:1499–1503 Zank TK, Zahringer U, Beckmann C, Pohnert G, Boland W, Holtorf H, Reski R, Lerchl J, Heinz E (2002) Cloning and functional characterisation of an enzyme involved in the elongation of Delta6-polyunsaturated fatty acids from the moss Physcomitrella patens. Plant J 31:255–268 Zhang Y, Adams IP, Ratledge C (2007) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153:2013–2025