Murali M. Yallapu, Prashanth K. Bhusetty Nagesh, Meena Jaggi, Subhash C. Chauhan
Curcumin (diferuloylmethane) is a bioactive and major phenolic component of turmeric derived from the rhizomes of curcuma longa linn. For centuries, curcumin has exhibited excellent therapeutic benefits in various diseases. Owing to its anti-oxidant and anti-inflammatory properties, curcumin plays a significant beneficial and pleiotropic regulatory role in various pathological conditions including cancer, cardiovascular disease, Alzheimer’s disease, inflammatory disorders, neurological disorders, and so on. Despite such phenomenal advances in medicinal applications, the clinical implication of native curcumin is hindered due to low solubility, physico-chemical instability, poor bioavailability, rapid metabolism, and poor pharmacokinetics. However, these issues can be overcome by utilizing an efficient delivery system. Active scientific research was initiated in 2005 to improve curcumin’s pharmacokinetics, systemic bioavailability, and biological activity by encapsulating or by loading curcumin into nanoform(s) (nanoformulations). A significant number of nanoformulations exist that can be translated toward medicinal use upon successful completion of pre-clinical and human clinical trials. Considering this perspective, current review provides an overview of an efficient curcumin nanoformulation for a targeted therapeutic option for various human diseases. In this review article, we discuss the clinical evidence, current status, and future opportunities of curcumin nanoformulation(s) in the field of medicine. In addition, this review presents a concise summary of the actions required to develop curcumin nanoformulations as pharmaceutical or nutraceutical candidates.
Recently, extracellular vesicles (EVs)—including exosomes, microvesicles, and others—have attracted interest as cell-derived biotherapeutics and drug delivery vehicles for a variety of applications. This interest stems from favorable properties of EVs, including their status as mediators of cell-cell communication via transfer of biological cargo and their reported ability to cross biological barriers that impede many delivery systems. However, there are many challenges to translation and widespread application of EV-based therapeutics. One such challenge that has yet to be extensively studied involves EV preservation and storage, which must be addressed to enable use of therapeutic EVs beyond resource-intensive settings. Studies to date suggest that the most promising mode of storage is − 80°C; however, understanding of storage-mediated effects is still limited. Additionally, the effects of storage appear to vary with sample source. The lack of knowledge about and standardization of EV storage may ultimately hinder widespread clinical translation. This mini-review reports current knowledge in the field of EV preservation and storage stability and highlights future directions in the area that could be critical to eventual development of EV therapies.