CNS Delivery Via Adsorptive Transcytosis

Springer Science and Business Media LLC - Tập 10 Số 3 - Trang 455-472 - 2008
Françoise Hervé1, Nicolae Ghinea2, Jean‐Michel Scherrmann3
1UFR Biomédicale, Université Paris Descartes, Paris, France
2Faculte de medecine, Université Paris 12, Creteil, France
3INSERM, U705, CNRS, UMR7157, Hôpital Fernand Widal, Université Paris Descartes, Université Paris Diderot, Paris, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

U. Bickel, T. Yoshikawa, and W. M. Pardridge. Delivery of peptides and proteins through the blood-brain barrier. Adv. Drug Deliv. Rev. 46:247–279 (2001).

P. L. Tuma, and A. L. Hubbard. Transcytosis: crossing cellular barriers. Physiol. Rev. 83:871–932 (2003).

D. J. Begley, and M. W. Brightman. Structural and functional aspects of the blood-brain barrier. Prog. Drug. Res. 61:39–78 (2003).

M. Simionescu, and N. Simionescu. Endothelial transport of macromolecules: transcytosis and endocytosis. A look from cell biology. Cell. Biol. Rev. 25:1–78 (1991).

M. Simionescu, N. Ghinea, A. Fixman, M. Lasser, L. Kukes, N. Simionescu, and G. E. Palade. The cerebral microvasculature of the rat: structure and luminal surface properties during early development. J. Submicrosc. Cytol. Pathol. 20:243–261 (1988).

W. M. Pardridge. Vector-mediated drug delivery to the brain. Adv. Drug Deliv. Rev. 36:299–321 (1999).

J. Huwyler, D. Wu, and W. M. Pardridge. Brain drug delivery of small molecules using immunoliposomes. Proc. Natl. Acad. Sci. USA. 93:14164–14169 (1996).

D. S. Cox, S. Raje, H. Gao, N. N. Salama, and N. D. Eddington. Enhanced permeability of molecular weight markers and poorly bioavailable compounds across Caco-2 cell monolayers using the absorption enhancer, zonula occludens toxin. Pharm. Res. 19:1680–1688 (2002).

U. Bickel. Antibody delivery through the blood-brain barrier. Adv. Dug. Deliv. Rev. 15:53–72 (1995).

J. F. Poduslo, and G. L. Curran. Polyamine modification increases the permeability of proteins at the blood-nerve and blood-brain barriers. J. Neurochem. 66:1599–1609 (1996).

A. K. Kumagai, J. B. Eisenberg, and W. M. Pardridge. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. J. Biol. Chem. 262:15214–15219 (1987).

A. W. Vorbrodt. Ultracytochemical characterization of anionic sites in the wall of brain capillaries. J. Neurocytol. 18:359–368 (1989).

M. Belting. Heparan sulfate proteoglycan as a plasma membrane carrier. Trends. Biochem. Sci. 28:145–151 (2003).

B. L. Coomber, and P. A. Stuart. Three-dimensional reconstruction of vesicles in endothelium of blood-brain barrier versus highly permeable microvessels. Anat. Rec. 215:256–261 (1986).

W. H. Oldendorf, M. E. Cornford, and W. J. Brown. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann. Neurol. 1:409–417 (1977).

W. Almers. Exocytosis. Annu. Rev. Physiol. 52:607–624 (1990).

W. M. Pardridge, J. Yang, and J. Eisenberg. Blood-brain barrier protein phosphorylation and dephosphorylation. J. Neurochem. 45:1141–1147 (1985).

R. D. Broadwell. Transcytosis of macromolecules through the blood-brain barrier: a cell biological perspective and critical appraisal. Acta. Neuropathol. 79:117–128 (1989).

J. E. Schnitzer. Caveolae: from basic trafficking mechanisms to targeting transcytosis for tissue-specific drug and gene delivery in vivo. Adv. Drug Deliv. Rev. 49:265–280 (2001).

S. A. Mousavi, L. Malerød, and R. Kjeken. Clathrin-dependent endocytosis. Biochem. J. 377:1–16 (2004).

M. T. Vu Hai, P. Lescop, H. Loosfelt, and N. Ghinea. Receptor-mediated transcytosis of follicle-stimulating hormone through the rat testicular microvasculature. Biol. Cell. 9:133–144 (2004).

G. R. Hayes, C. A. Enns, and J. J. Lucas. Identification of the O-linked glycosylation site of the human transferrin receptor. Glycobiology. 2:355–359 (1992).

J. Girod, L. Fenart, A. Régina, M. P. Dehouck, G. Hong, J. M. Scherrmann, R. Cecchelli, and F. Roux. Transport of cationized anti-tetanus Fab’2 fragments across an in vitro blood-brain barrier model: involvement of the transcytosis pathway. J. Neurochem. 73:2002–2008 (1999).

G. Hong, O. Chappey, E. Niel, and J. M. Scherrmann. Enhanced cellular uptake and transport of polyclonal immunoglobulin G and Fab after their cationization. J. Drug Target. 8:67–77 (2000).

F. Welfringer, P. d’Athis, J. M. Scherrmann, and F. Hervé. Development and validation of an antigen-binding capture ELISA for native and putrescine-modified anti-tetanus F(ab’)2 fragments for the assessment of the cellular uptake and plasma kinetics of the antibodies. J. Immunol. Methods. 307:82–95 (2005).

F. Hervé, N. Ghinea, P. d’Athis, P. A. Carrupt, and J. M. Scherrmann. Covalent modifications of anti-tetanus F(ab’)2 fragments with natural and synthetic polyamines and their effects on the antibody endocytosis in cultured HL60 cells. Bionconjug Chem (2008) doi:10.1021/bc800045x.

G. Drin, S. Cottin, E. Blanc, A. R. Rees, and J. Temsamani. Studies on the internalization mechanism of cationic cell-penetrating peptides. J. Biol. Chem. 278:31192–31201 (2003).

D. Soulet, B. Gagnon, S. Rivest, M. Audette, and R. Poulin. A fluorescent probe of polyamine transport accumulates into intracellular acidic vesicles via a two-step mechanism. J. Biol. Chem. 279:49355–49366 (2004).

M. Belting, K. Mani, M. Jönsson, F. Cheng, S. Sandgren, S. Jonsson, K. Ding, J. G. Delcros, and L. A. Fransson. Glypican-1 is a vehicle for polyamine uptake in mammalian cells. A pivotal role for nitrosothiol-derived nitric oxide. J. Biol. Chem. 278:47181–47189 (2003).

R. D. Egleton, and T. P. Davis. Bioavailability and transport of peptides and peptide drugs into the brain. Peptides. 18:1431–1439 (1997).

A. E. Pegg. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem. J. 234:249–262 (1986).

M. M. Reinholz, J. J. Haggard, G. L. Curran, and J. F. Poduslo. Plasma pharmacokinetics, nervous system biodistribution and biostability, and spinal cord permeability at the blood-brain barrier of putrescine–modified catalase in the adult rat. Exp. Neurol. 159:191–203 (1999).

T. M. Wengenack, G. L. Curran, and J. F. Poduslo. Postischemic, systemic administration of polyamine-modified superoxide dismutase reduces hippocampal CA1 neurodegeneration in rat global cerebral ischemia. Brain Res. 754:46–54 (1997).

C. Rousselle, M. Smirnova, P. Clair, J. M. Lefauconnier, A. Chavanieu, B. Calas, J. M. Scherrmann, and J. Temsamani. Enhanced delivery of doxorubicin into the brain via a peptide-vector-mediated strategy: saturation kinetics and specificity. J. Pharmacol. Exp. Ther. 296:124–131 (2001).

L. J. Nell, and J. W. Thomas. Frequency and specificity of protamine antibodies in diabetic and control subjects. Diabetes. 37:172–176 (1988).

A. Muckerheide, R. J. Apple, A. J. Pesce, and J. G. Michael. Cationization of protein antigens. I. Alteration of immunogenic properties. J. Immunol. 138:833–837 (1987).

J. F. Poduslo, M. Ramakrishnan, S. S. Holasek, M. Ramirez-Alvarado, K. K. Kandimalla, E. J. Gilles, G. L. Curran, and T. M. Wengenack. In vivo targeting of antibody fragments to the nervous system for Alzheimer’s disease immunotherapy and molecular imaging of amyloid plaques. J. Neurochem. 102:420–433 (2007).

M. M. Reinholz, C. M. Merkle, and J. F. Poduslo. Therapeutic benefits of putrescine-modified catalase in a transgenic mouse model of familial amyotrophic lateral sclerosis. Exp. Neurol. 159:204–216 (1999).

J. F. Poduslo, S. L. Whelan, G. L. Curran, and T. M. Wengenack. Therapeutic benefit of polyamine-modified catalase as a scavenger of hydrogen peroxide and nitric oxide in familial amyotrophic lateral sclerosis transgenics. Ann. Neurol. 48:943–947 (2000).

J. Futami, M. Kitazoe, H. Murata, and H. Yamada. Exploiting protein cationization techniques in future drug development. Expert. Opin. Drug Discov. 2:261–269 (2007).

P. R. Lockman, and D. D. Allen. The transport of choline. Drug Dev. Ind. Pharm. 28:749–771 (2002).

H. Koepsell. Polyspecific organic cation transporters: their functions and interactions with drugs. Trends. Pharmacol. Sci. 25:375–381 (2004).

L. Fenart, A. Casanova, B. Dehouck, C. Duhem, S. Slupek, R. Cecchelli, and D. Betbeder. Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier. J. Pharmacol. Exp. Ther. 291:1017–1022 (1999).

M. Voiena, and M. Simionescu. Designing of “intelligent” liposomes for efficient delivery of drugs. J. Cell. Mol. Med. 4:465–474 (2002).

M. Lindgren, M. Hällbrink, A. Prochiantz, and U. Langel. Cell-penetrating peptides. Trends. Pharmacol. Sci. 21:99–103 (2000).

G. Drin, C. Rousselle, J. M. Scherrmann, A. R. Rees, and J. Temsamani. Peptide delivery to the brain via adsorptive-mediated endocytosis: advances with SynB vectors. AAPS. PharmSci. 4:E26 (2002).

R. Fischer, T. Waizenegger, K. Köhler, and R. Brock. A quantitative validation of fluorophore-labelled cell-permeable peptide conjugates: fluorophore and cargo dependence of import. Biochim. Biophys. Acta. 1564:365–374 (2002).

E. Vivès, P. Brodin, and B. Lebleu. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272:16010–16017 (1997).

M. A. Bogoyevitch, T. S. Kendrick, D. C. Ng, and R. K. Barr. Taking the cell by stealth or storm? Protein transduction domains (PTDs) as versatile vectors for delivery. DNA. Cell. Biol. 21:879–894 (2002).

P. E. Thorén, D. Persson, M. Karlsson, and B. Nordén. The antennapedia peptide penetratin translocates across lipid bilayers—the first direct observation. FEBS. Lett. 482:265–268 (2000).

G. Drin, M. Mazel, P. Clair, D. Mathieu, M. Kaczorek, and J. Temsamani. Physico-chemical requirements for cellular uptake of pAntp peptide. Role of lipid-binding affinity. Eur. J. Biochem. 268:1304–1314 (2001).

J. P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure, M. J. Gait, L. V. Chernomordik, and B. Lebleu. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278:585–590 (2003).

E. Vivès, J. P. Richard, C. Rispal, and B. Lebleu. TAT peptide internalization: seeking the mechanism of entry. Curr. Protein. Pept. Sci. 4:125–132 (2003).

S. Console, C. Marty, C. Garcia-Echeverria, R. Schwendener, and K. Ballmer-Hofer. Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J. Biol. Chem. 278:35109–35114 (2003).

A. Fittipaldi, A. Ferrari, M. Zoppé, C. Arcangeli, V. Pellegrini, F. Beltram, and M. Giacca. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J. Biol. Chem. 278:34141–34149 (2003).

P. A. Wender, D. J. Mitchell, K. Pattabiraman, E. T. Pelkey, L. Steinman, and J. B. Rothbard. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc. Natl. Acad. Sci. U. S. A. 97:13003–13008 (2000).

T. Suzuki, S. Futaki, M. Niwa, S. Tanaka, K. Ueda, and Y. Sugiura. Possible existence of common internalization mechanisms among arginine-rich peptides. J. Biol. Chem. 277:2437–2443 (2002).

B. E. Vogel, S. J. Lee, A. Hildebrand, W. Craig, M. D. Pierschbacher, F. Wong-Staal, and E. Ruoslahti. A novel integrin specificity exemplified by binding of the alpha v beta 5 integrin to the basic domain of the HIV Tat protein and vitronectin. J. Cell. Biol. 121:461–468 (1993).

D. A. Mann, and A. D. Frankel. Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO. J. 10:1733–1739 (1991).

M. Silhol, M. Tyagi, M. Giacca, B. Lebleu, and E. Vivès. Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Eur. J. Biochem. 269:94–501 (2002).

S. Fawell, J. Seery, Y. Daikh, C. Moore, L. L. Chen, B. Pepinsky, and J. Barsoum. Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. U. S. A. 91:664–668 (1994).

M. Tyagi, M. Rusnati, M. Presta, and M. Giacca. Internalization of HIV-1 tat protein requires cell surface heparan sulfate proteoglycans. J. Biol. Chem. 276:3254–3261 (2001).

M. Rusnati, C. Urbinati, A. Caputo, L. Possati, H. Lortat-Jacob, M. Giacca, D. Ribatti, and M. Presta. Pentosan polysulfate as an inhibitor of extracellular HIV-1 Tat. J. Biol. Chem. 276:22420–22425 (2001).

A. Ferrari, V. Pellegrini, C. Arcangeli, A. Fittipaldi, M. Giacca, and F. Beltram. Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol. Ther. 8:284–294 (2003).

U. Koppelhus, S. K. Awasthi, V. Zachar, H. U. Holst, P. Ebbesen, and P. E. Nielsen. Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense. Nucleic. Acid Drug Dev. 12:51–63 (2002).

S. Sandgren, F. Cheng, and M. Belting. Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide. Role for cell-surface proteoglycans. J. Biol. Chem. 277:38877–38883 (2002).

Y. Sokolov, T. Mirzabekov, D. W. Martin, R. I. Lehrer, and B. L. Kagan. Membrane channel formation by antimicrobial protegrins. Biochim. Biophys. Acta. 1420:23–29 (1999).

G. Drin, and J. Temsamani. Translocation of protegrin I through phospholipid membranes: role of peptide folding. Biochim. Biophys. Acta. 1559:160–170 (2002).

C. Rousselle, P. Clair, M. Smirnova, Y. Kolesnikov, G. W. Pasternak, S. Gac-Breton, A. R. Rees, J. M. Scherrmann, and J. Temsamani. Improved brain uptake and pharmacological activity of dalargin using a peptide-vector-mediated strategy. J. Pharmacol. Exp. Ther. 306:371–376 (2003).

C. Rousselle, P. Clair, J. Temsamani, and J. M. Scherrmann. Improved brain delivery of benzyl penicillin with a peptide-vector-mediated strategy. J. Drug Target. 10:309–315 (2002).

M. Lundberg, S. Wikström, and M. Johansson. Cell surface adherence and endocytosis of protein transduction domains. Mol. Ther. 8:143–150 (2003).

R. Tréhin, and H. P. Merkle. Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur. J. Pharm. Biopharm. 58:209–223 (2004).

J. Temsamani, and P. Vidal. The use of cell-penetrating peptides for drug delivery. Drug. Discov. Today. 9:1012–1019 (2004).

M. Pooga, C. Kut, M. Kihlmark, M. Hällbrink, S. Fernaeus, R. Raid, T. Land, E. Hallberg, T. Bartfai, and U. Langel. Cellular translocation of proteins by transportan. FASEB. J. 15:1451–1453 (2001).

M. Hällbrink, A. Florén, A. Elmquist, M. Pooga, T. Bartfai, and U. Langel. Cargo delivery kinetics of cell-penetrating peptides. Biochim. Biophys. Acta. 1515:101–109 (2001).

F. Bourasset, S. Cisternino, J. Temsamani, and J. M. Scherrmann. Evidence for an active transport of morphine-6-beta-d-glucuronide but not P-glycoprotein-mediated at the blood-brain barrier. J. Neurochem. 86:1564–1567 (2003).

S. R. Schwarze, A. Ho, A. Vocero-Akbani, and S. F. Dowdy. In vivo protein transduction: delivery of a biologically active protein in the mouse. Science. 285:1569–1572 (1999).

G. Cao, W. Pei, H. Ge, Q. Liang, Y. Luo, F. R. Sharp, A. Lu, R. Ran, S. H. Graham, and J. Chen. In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J. Neurosci. 22:5423–5431 (2002).

E. Kilic, G. P. Dietz, D. M. Hermann, and M. Bähr. Intravenous TAT-Bcl-Xl is protective after middle cerebral artery occlusion in mice. Ann. Neurol. 52:617–622 (2002).

S. Violini, V. Sharma, J. L. Prior, M. Dyszlewski, and D. Piwnica-Worms. Evidence for a plasma membrane-mediated permeability barrier to Tat basic domain in well-differentiated epithelial cells: lack of correlation with heparan sulfate. Biochemistry. 41:12652–12661 (2002).

M. Mazel, P. Clair, C. Rousselle, P. Vidal, J. M. Scherrmann, D. Mathieu, and J. Temsamani. Doxorubicin-peptide conjugates overcome multidrug resistance. Anticancer Drugs. 12:107–116 (2001).

T. Jiang, E. S. Olson, Q. T. Nguyen, M. Roy, P. A. Jennings, and R. Y. Tsien. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl. Acad. Sci. U. S. A. 101:17867–17872 (2004).

E. Wagner, C. Culmsee, and S. Boeckle. Targeting of polyplexes: toward synthetic virus vector systems. Adv. Genet. 53PA:333–354 (2005).

M. E. Lindgren, M. M. Hällbrink, A. M. Elmquist, and U. Langel. Passage of cell-penetrating peptides across a human epithelial cell layer in vitro. Biochem. J. 377:69–76 (2004).

J. Brugidou, C. Legrand, J. Méry, and A. Rabié. The retro-inverso form of a homeobox-derived short peptide is rapidly internalised by cultured neurons: a new basis for an efficient intracellular delivery system. Biochem. Biophys. Res. Comm. 214:685–693 (1995).

M. Rueping, Y. Mahajan, M. Sauer, and D. Seebach. Cellular uptake studies with beta-peptides. Chembiochem. 3:257–259 (2002).

H. Jia, M. Lohr, S. Jezequel, D. Davis, S. Shaikh, D. Selwood, and I. Zachary. Cysteine-rich and basic domain HIV-1 Tat peptides inhibit angiogenesis and induce endothelial cell apoptosis. Biochem. Biophys. Res. Comm. 283:469–479 (2001).

S. Shahana, C. Kampf, and G. M. Roomans. Effects of the cationic protein poly-l-arginine on airway epithelial cells in vitro. Mediators. Inflamm. 11:141–148 (2002).

A. Santana, S. Hyslop, E. Antunes, M. Mariano, Y. S. Bakhle, and G. de Nucci. Inflammatory responses induced by poly-l-arginine in rat lungs in vivo. Agents Actions. 39:104–110 (1993).

X. Huang, M. Bennett, and P. E. Thorpe. A monoclonal antibody that binds anionic phospholipids on tumor blood vessels enhances the antitumor effect of docetaxel on human breast tumors in mice. Cancer. Res. 65:4408–4416 (2005).

K. R. Smith, and R. T. Borchardt. Permeability and mechanism of albumin, cationized albumin, and glycosylated albumin transcellular transport across monolayers of cultured bovine brain capillary endothelial cells. Pharm. Res. 6:466–473 (1989).

J. F. Poduslo, G. L. Curran, and C. T. Berg. Macromolecular permeability across the blood–nerve and blood-brain barriers. Proc. Natl. Acad. Sci. USA. 91:5705–5709 (1994).

L. Descamps, M. P. Dehouck, G. Torpier, and R. Cecchelli. Receptor-mediated transcytosis of transferrin through blood-brain barrier endothelial cells. Am. J. Physiol. 270:H1149–H1158 (1996).

R. D. Broadwell, B. J. Baker-Cairns, P. M. Friden, C. Oliver, and J. C. Villegas. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor. Exp. Neurol. 142:47–65 (1996).

B. Dehouck, L. Fenart, M. P. Dehouck, A. Pierce, G. Torpier, and R. Cecchelli. A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J. Cell. Biol. 138:877–889 (1997).

W. M. Pardridge, Y. S. Kang, J. L. Buciak, and J. Yang. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharm. Res. 12:807–816 (1995).

R. R. Reinhardt, and C. A. Bondy. Insulin-like growth factors cross the blood-brain barrier. Endocrinology. 135:1753–1761 (1994).

P. L. Golden, T. J. Maccagnan, and W. M. Pardridge. Human blood-brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. J. Clin. Invest. 99:14–18 (1997).

J. F. Poduslo, G. L. Curran, B. Sanyal, and D. J. Selkoe. Receptor-mediated transport of human amyloid beta-protein 1–40 and 1–42 at the blood-brain barrier. Neurobiol. Dis. 6:190–199 (1999).

W. M. Pardridge, and R. J. Boado. Enhanced cellular uptake of biotinylated antisense oligonucleotides or peptide mediated by avidin, a cationic protein. FEBS. Lett. 288:30–32 (1991).

W. M. Pardridge, D. Triguero, and J. Buciak. Transport of histone through the blood-brain barrier. J. Pharmacol. Exp. Ther. 251:821–826 (1989).

W. M. Pardridge, J. L. Buciak, Y. S. Kang, and R. J. Boado. Protamine-mediated transport of albumin into brain and other organs of the rat. Binding and endocytosis of protamine–albumin complex by microvascular endothelium. J. Clin. Invest. 92:2224–2229 (1993).

J. C. Villegas, and R. D. Broadwell. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. II Adsorptive-transcytosis of WGA-HRP and the blood-brain and brain–blood barriers. J. Neurocytol. 22:67–80 (1993).

T. J. Raub, and K. L. Audus. Adsorptive endocytosis and membrane recycling by cultured primary bovine brain microvessel endothelial cell monolayers. J. Cell. Sci. 97:127–138 (1990).

I. Tamai, Y. Sai, H. Kobayashi, M. Kamata, T. Wakamiya, and A. Tsuji. Structure-internalization relationship for adsorptive-mediated endocytosis of basic peptides at the blood-brain barrier. J. Pharmacol. Exp. Ther. 280:410–415 (1997).

T. Shimura, S. Tabata, T. Ohnishi, T. Terasaki, and A. Tsuji. Transport mechanism of a new behaviorally highly potent adrenocorticotropic hormone (ACTH) analog, ebitaride, through the blood-brain barrier. J. Pharmacol. Exp. Ther. 258:459–465 (1991).

T. Terasaki, Y. Deguchi, H. Sato, K. Hirai, and A. Tsuji. In vivo transport of a dynorphin-like analgesic peptide, E-2078, through the blood-brain barrier: an application of brain microdialysis. Pharm. Res. 8:815–820 (1991).

K. K. Kandimalla, G. L. Curran, S. S. Holasek, E. J. Gilles, T. M. Wengenack, M. Ramirez-Alvarado, and J. F. Poduslo. Physiological and biophysical factors that influence Alzheimer’s disease amyloid plaque targeting of native and putrescine modified human amyloid beta40. J. Pharmacol. Exp. Ther. 318:17–25 (2006).

J. F. Poduslo, G. L. Curran, A. Kumar, B. Frangione, and C. Soto. Beta-sheet breaker peptide inhibitor of Alzheimer’s amyloidogenesis with increased blood-brain barrier permeability and resistance to proteolytic degradation in plasma. J. Neurobiol. 39:371–382 (1999).

J. F. Poduslo, G. L. Curran, and J. S. Gill. Putrescine-modified nerve growth factor: bioactivity, plasma pharmacokinetics, blood-brain/nerve barrier permeability, and nervous system biodistribution. J. Neurochem. 71:1651–1660 (1998).

W. M. Pardridge, D. Triguero, and J. L. Buciak. Beta-endorphin chimeric peptide: transport through the blood-brain barrier in vivo and cleavage of disulfide linkage by brain. Endocrinology. 126:977–984 (1990).

M. Thöle, S. Nobmanna, J. Huwyler, A. Bartmann, and G. Fricker. Uptake of cationized albumin coupled liposomes by cultured porcine brain microvessel endothelial cells and intact brain capillaries. J. Drug. Target. 10:337–344 (2002).

J. F. Poduslo, and G. L. Curran. Amyloid beta peptide as a vaccine for Alzheimer’s disease involves receptor-mediated transport at the blood-brain barrier. Neuroreport. 12:3197–3200 (2001).

J. Oehlke, A. Scheller, B. Wiesner, E. Krause, M. Beyermann, E. Klauschenz, M. Melzig, and M. Bienert. Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim. Biophys. Acta. 1414:127–139 (1998).

M. Pooga, M. Hällbrink, M. Zorko, and U. Langel. Cell penetration by transportan. FASEB. J. 12:67–77 (1998).

L. Chaloin, P. Vidal, A. Heitz, N. Van Mau, J. Méry, G. Divita, and F. Heitz. Conformations of primary amphipathic carrier peptides in membrane mimicking environments. Biochemistry. 36:11179–11187 (1997).

L. Chaloin, P. Vidal, P. Lory, J. Méry, N. Lautredou, G. Divita, and F. Heitz. Design of carrier peptide-oligonucleotide conjugates with rapid membrane translocation and nuclear localization properties. Biochem. Biophys. Res. Comm. 243:601–608 (1998).

D. J. Mitchell, D. T. Kim, L. Steinman, C. G. Fathman, and J. B. Rothbard. Polyarginine enters cells more efficiently than other polycationic homopolymers. J. Pept. Res. 56:318–325 (2000).

C. M. Troy, D. Derossi, A. Prochiantz, L. A. Greene, and M. L. Shelanski. Downregulation of Cu/Zn superoxide dismutase leads to cell death via the nitric oxide-peroxynitrite pathway. J. Neurosci. 16:253–261 (1996).

A. Astriab-Fisher, D. S. Sergueev, M. Fisher, B. R. Shaw, and R. L. Juliano. Antisense inhibition of P-glycoprotein expression using peptide-oligonucleotide conjugates. Biochem. Pharmacol. 60:83–90 (2000).

K. Han, M. J. Jeon, K. A. Kim, J. Park, and S. Y. Choi. Efficient intracellular delivery of GFP by homeodomains of Drosophila fushi-tarazu and engrailed proteins. Mol. Cells. 10:728–732 (2000).

Y. N. Chen, S. K. Sharma, T. M. Ramsey, L. Jiang, M. S. Martin, K. Baker, P. D. Adams, K. W. Bair, and W. G. Kaelin Jr. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc. Natl. Acad. Sci. U. S. A. 96:4325–4329 (1999).

M. Bonfanti, S. Taverna, M. Salmona, M. D’Incalci, and M. Broggini. p21WAF1-derived peptides linked to an internalization peptide inhibit human cancer cell growth. Cancer. Res. 57:1442–1446 (1997).

M. Pooga, U. Soomets, M. Hällbrink, A. Valkna, K. Saar, K. Rezaei, U. Kahl, J. X. Hao, X. J. Xu, Z. Wiesenfeld-Hallin, T. Hökfelt, T. Bartfai, and U. Langel. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol. 16:857–861 (1998).

A. M. Vocero-Akbani, N. V. Heyden, N. A. Lissy, L. Ratner, and S. F. Dowdy. Killing HIV-infected cells by transduction with an HIV protease-activated caspase-3 protein. Nat. Med. 5:29–33 (1999).

D. C. Anderson, R. Manger, J. Schroeder, D. Woodle, M. Barry, A. C. Morgan, and A. R. Fritzberg. Enhanced in vitro tumor cell retention and internalization of antibody derivatized with synthetic peptides. Bioconjug. Chem. 4:10–18 (1993).

N. J. Caron, Y. Torrente, G. Camirand, M. Bujold, P. Chapdelaine, K. Leriche, N. Bresolin, and J. P. Tremblay. Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol. Ther. 3:310–318 (2001).

D. R. Gius, S. A. Ezhevsky, M. Becker-Hapak, H. Nagahara, M. C. Wei, and S. F. Dowdy. Transduced p16INK4a peptides inhibit hypophosphorylation of the retinoblastoma protein and cell cycle progression prior to activation of Cdk2 complexes in late G1. Cancer. Res. 59:2577–2580 (1999).

M. C. Morris, P. Vidal, L. Chaloin, F. Heitz, and G. Divita. A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic. Acids. Res. 25:2730–2736 (1997).