Springer Science and Business Media LLC

Công bố khoa học tiêu biểu

Sắp xếp:  
Semi-analytical model to predict the performance of cyclic steam stimulation oil wells
Springer Science and Business Media LLC - Tập 11 - Trang 1993-2007 - 2021
George Basta, Mahmoud Abu El Ela, Ahmed El-Banbi, Sayed El-Tayeb, Saad El-Din Mohamed Desouky, Mohamed Helmy Sayyouh
Prediction of the performance of oil wells under Cyclic Steam Stimulation (CSS) is challenging in complex and heterogeneous reservoirs, especially with limited data. Analytical and numerical simulation models do not usually give accurate predictions in such conditions. In this work, a semi-analytical model was developed to determine consistent mathematical relationships between the injected steam and some of the effective oil production parameters for more accurate prediction of oil production rates. Field investigation indicates that the change of the Cumulative Oil to Steam Ratio (COSR) to production days is related to a group of effective oil production parameters. This group of parameters includes the cumulative injected steam relative to the drainage volume, the oil net pay thickness relative to the gross pay thickness, and the vertical permeability relative to the thermal diffusivity. These parameters were arranged in two dimensionless groups. It was found that plotting these two dimensionless groups on Log–Log scale for any reservoir yields a straight line (correlation). For any reservoir under CSS, measurements of two steam cycles are sufficient to identify the constants of the proposed correlation. This method has been applied and validated on six reservoirs with different reservoir characterizations. Six different wells with a total of 43 steam cycles from these reservoirs were analyzed with the same approach. The mathematical relationships of the dimensionless groups were calculated, and the Log–Log plot was constructed for each well using the data of the first two cycles. Then, the proposed correlation was developed for each well and used to predict the well performance starting from the third steam cycle. At the end, the predicted performance of each well was compared with the corresponding actual measurements. The results showed that the average absolute percentage deviation between the actual and the predicted cumulative oil production through the well lifetime is less than 5% for the six wells. In addition, the absolute instantaneous deviation between the actual and the predicted cumulative oil production for each individual cycle in all cases is (1) less than 15% for about 42% of the tested CSS cycles, (2) between 15 to 25% for about 39% of the tested CSS cycles, and (3) higher than 25% for about 19% of the tested CSS cycles. This work is considered an original contribution to develop dimensionless relationships that can be used to predict the oil production of the CSS operations for reservoirs with limited data. The required data are the historical production rate, steam injection rate, and basic petrophysical parameters.
Borehole enlargement rate as a measure of borehole instability in hydrate reservoir and its relationship with drilling mud density
Springer Science and Business Media LLC - - 2021
Qingchao Li, Lingling Liu, Bo Yu, Linian Guo, Sheng Shi, Linchun Miao
AbstractBorehole collapse will pose a threat to the safety of equipment and personnel during drilling operation. In this paper, a finite element multi-field coupling model for investigating borehole collapse in hydrate reservoir was developed. In this model, fluid seepage, heat transfer, hydrate dissociation and borehole deformation are all considered. Based on which, effects of drilling fluid density on both of hydrate dissociation and borehole collapse are investigated. The investigation results show that disturbance of drilling fluid invasion to hydrate reservoir will lead to hydrate dissociation around wellbore, and dissociation range narrows obviously with the increase in drilling fluid density. When the relative fluid density is 0.98, natural gas hydrates in reservoir with a width of about 16.65 cm around wellbore dissociate completely. However, dissociation range of natural gas hydrate has decreased to 12.08 cm when the relative fluid density is 1.10. Moreover, hydrate dissociation around wellbore caused by drilling fluid invasion may lead to borehole collapse, and borehole collapse can be significantly restrained with the increase in relative fluid density. Borehole enlargement rate is 33.67% when the relative fluid density is 0.98, but nearly no collapse area displays around wellbore when the relative fluid density increases to 1.12. In addition, investigation herein can provide an idea for designing drilling fluid density in hydrate reservoir when different allowable borehole enlargement rate is considered. The minimum fluid density designed for avoiding disastrous borehole collapse increases nonlinearly when higher requirements for borehole stability are proposed.
Well integrity management in mature fields: a state-of-the-art review on the system structure and maturity
Springer Science and Business Media LLC - Tập 11 - Trang 1833-1853 - 2021
Mostafa S. Yakoot, Ahmed A. Elgibaly, Adel M. S. Ragab, Omar Mahmoud
Nowadays, oil and gas (O&G) fields are maturing and creating new threats. This urged the operating companies and industry researchers to have intensive focus on well integrity (WI). Building Well Integrity Management System (WIMS) establishes standardized criteria to guarantee that integrity of all wells is preserved during their lifespan, functions properly in healthy condition, and is able to operate consistently to fulfill the expected production/injection demands. Moreover, exploration and production (E&P) companies put Health, Safety, and Environment (HSE), assets, production, local and public image as top priority in their businesses. Having effective WIMS at all times and throughout all well phases reduces the frequency of major integrity failures and thus helps companies to be on track regarding the aforementioned considerations. In this paper, we present a comprehensive review on the system structure and maturity of WIMS in mature fields. This state-of-the-art review highlights the efforts made by different O&G operators all over the world to develop and start application of WIMS, which varies widely due to differences in the main WI challenges that are recurring in each field or concession. Moreover, it lists the goals and expounds the stages of launching effective WIMS. In addition, the key elements, around which the WI program is structured, are discussed and presented for various O&G operators. The major five elements of accountability and responsibility, well operations procedures, well intervention procedures, tubing and casing integrity program, and wellhead and X-tree maintenance are overviewed. Furthermore, this paper assesses WIMS sustainability through demonstration of WI maturity models, scrutiny of maturity levels, and analysis of transformative elements to convert WIMS into strategic framework. Risk management systems as well as application of analytics in WIMS are also covered and thoroughly discussed. In reviewing the literature covering different assets—all over the world for the last 15 years—it was found that real progress was made in WI area, and WIMS established in many operating companies through different approaches. However, the introduced systems lack universality and few of them are applying artificial intelligence as powerful tool for boosting the system. The most obvious finding to emerge from the analysis is that WIMS is crucial system that must be implemented and matured for well lifecycle. The findings of this study can help operating companies for better framing of key pillars to have robust and operable WIMS throughout different fields and concessions, hence improving the well integrity performance worldwide.
Energy storage systems for drilling rigs
Springer Science and Business Media LLC - - 2022
Evgeniy Chupin, К. Н. Фролов, Maxim Korzhavin, О.В. Жданеев
AbstractEnergy storage systems are an important component of the energy transition, which is currently planned and launched in most of the developed and developing countries. The article outlines development of an electric energy storage system for drilling based on electric-chemical generators. Description and generalization are given for the main objectives for this system when used on drilling rigs isolated within a single pad, whether these are fed from diesel gensets, gas piston power plants, or 6–10 kV HV lines. The article studies power operating modes of drilling rigs, provides general conclusions and detailed results for one of more than fifty pads. Based on the research, a generic architecture of the energy storage module is developed, and an engineering prototype is built. The efficiency of using a hybrid energy accumulation design is proven; the design calls for joint use of Li-ion cells and supercapacitors, as well as three-level inverters, to control the storage system. The article reviews all possible options for connecting the system into a unified rig power circuit, and the optimum solution is substantiated. The research into the rig operating modes and engineering tests yielded a simplified mathematical model of an energy storage unit integrated into the power circuit of a drilling rig. The model is used to forecast the payoff period of the system for various utilization options and rig operating modes. The findings of this study can help to better understand which type of storage system is the most efficient for energy systems with temporary high load peaks, like drilling rigs.
Optimal operation of a multi-distribution natural gas pipeline grid: an ant colony approach
Springer Science and Business Media LLC - Tập 11 - Trang 3859-3878 - 2021
Adarsh Kumar Arya
The enormous cost of transporting oil and gas through pipelines and the operational benefits that the industry receives through optimization has incited analysts for decades to find optimization strategies that help pipeline managers operate pipeline grids with the least expense. The paper aims to minimize the pipeline grids' operating costs using an ant colony optimization strategy. The article constructs a multi-objective modeling framework for a natural gas pipeline grid based on data from the French gas pipeline network corporation 'Gaz De France,' using pipeline and compressor hydraulics. The gas pipeline grid comprises seven gas supply nodes and nineteen gas distribution centers. Seven compressor stations provided at various locations on the pipeline route raise the gas pressure. Two competing objectives of reducing fuel usage in compressors and increasing throughput at distribution centers are acknowledged to reduce the pipeline's operating cost. The 'multi-objective ant colony optimization (MOACO)' approach is implemented to the pipeline transportation model to reduce the natural gas pipeline grid's operating cost. The process variables include the amount of gas flowing through the pipe and the pressure at pipe nodes. This method provides the optimum solution for each fuel consumption level on each compressor, and it does so by producing a Pareto front for each of the nineteen gas distribution points. The blueprints of the methodology used and the findings collected intend to guide pipeline managers and select the best of the most preferred solutions.
Application of maximum likelihood and model-based seismic inversion techniques: a case study from K-G basin, India
Springer Science and Business Media LLC - Tập 12 Số 5 - Trang 1403-1421 - 2022
Richa Richa, S. P. Maurya, Kumar Hemant Singh, R. P. Singh, Rohtash Kumar, Prabodh Kumar Kushwaha
AbstractSeismic inversion is a geophysical technique used to estimate subsurface rock properties from seismic reflection data. Seismic data has band-limited nature and contains generally 10–80 Hz frequency hence seismic inversion combines well log information along with seismic data to extract high-resolution subsurface acoustic impedance which contains low as well as high frequencies. This rock property is used to extract qualitative as well as quantitative information of subsurface that can be analyzed to enhance geological as well as geophysical interpretation. The interpretations of extracted properties are more meaningful and provide more detailed information of the subsurface as compared to the traditional seismic data interpretation. The present study focused on the analysis of well log data as well as seismic data of the KG basin to find the prospective zone. Petrophysical parameters such as effective porosity, water saturation, hydrocarbon saturation, and several other parameters were calculated using the available well log data. Low Gamma-ray value, high resistivity, and cross-over between neutron and density logs indicated the presence of gas-bearing zones in the KG basin. Three main hydrocarbon-bearing zones are identified with an average Gamma-ray value of 50 API units at the depth range of (1918–1960 m), 58 API units (2116–2136 m), and 66 API units (2221–2245 m). The average resistivity is found to be 17 Ohm-m, 10 Ohm-m, and 12 Ohm-m and average porosity is 15%, 15%, and 14% of zone 1, zone 2, and zone 3 respectively. The analysis of petrophysical parameters and different cross-plots showed that the reservoir rock is of sandstone with shale as a seal rock. On the other hand, two types of seismic inversion namely Maximum Likelihood and Model-based seismic inversion are used to estimate subsurface acoustic impedance. The inverted section is interpreted as two anomalous zones with very low impedance ranging from 1800 m/s*g/cc to 6000 m/s*g/cc which is quite low and indicates the presence of loose formation.
A review of experimental studies on sand screen selection for unconsolidated sandstone reservoirs
Springer Science and Business Media LLC - Tập 10 - Trang 1675-1688 - 2020
Nur Aqilah Ahad, Morteza Jami, Stephen Tyson
Sand production is a problem that affects hydrocarbon production from unconsolidated sandstone reservoirs. Several factors, such as the strength of the reservoir, its lithification and cementation and reduction in pore pressure, may cause sand to be separated from the rock and transported by hydrocarbons to the well. Producing sand commonly causes erosion and corrosion of downhole and surface equipment, leading to production interruptions and sometimes forces operators to shut-in wells. Several different methods of sand control are available to reduce the impact of sand production. The reviewed papers suggest that the most suitable methods for unconsolidated sandstone reservoirs are stand-alone screens and gravel packs. Because of the cost and complexity of gravel packs, stand-alone screens are usually the first choice. These screens have different geometries, and selection of the most suitable screen depends on the particle size distribution of the grains in the formation and other reservoir and production parameters. A screen retention test, run in a laboratory with screen samples and typical sands, is often used to ensure that the screen is suitable for the reservoir. This paper reviews the main causes of sand production, the properties of unconsolidated sandstones that predispose reservoirs to sand production problems and the selection criteria for the most suitable mitigation method. The process of selecting a screen using experimental screen retention tests is reviewed, and the limitations of these tests are also discussed. Some numerical simulations of experimental tests are also reviewed, since this represents a very cost-effective alternative to laboratory experiments.
Integration of 3D-seismic and petrophysical analysis with rock physics analysis in the characterization of SOKAB field, Niger delta, Nigeria
Springer Science and Business Media LLC - Tập 9 - Trang 899-909 - 2018
S. S. Bodunde, P. A. Enikanselu
Compartmentalization of reservoirs and technical failures experienced in data acquisition, processing and interpretation, without doubt, hinder the effective characterization of reservoirs. In this research, to ensure accuracy, three methods were integrated to characterize reservoirs in SOKAB field. Petrophysical analysis, seismic interpretation, and modeling, and rock physics analysis were utilized. Its objectives were: to develop a template to facilitate improvements in future reservoir characterization research works and producibility determination; to utilize rock physics models to quality check the seismic results and to properly define the pore connectivity of the reservoirs, and to locate the best productive zones for future wells in the field. Forty-three faults were mapped and this included five major faults. Two hydrocarbon bearing sand units (A & B) were correlated across five wells. Structural maps were generated for both reservoirs from which majorly fault assisted and dependent closures were observed. The petrophysical analysis indicated that the reservoirs have good pore interconnectivity (Average Фeffective = 23% & 22% and Kaverage = 1754md & 2295md). The seismic interpretation and modeling alongside the petrophysical analysis were then quality checked via qualitative rock physics analysis. From the Kdry/Porosity plot, the sands were generally observed to lie within the lower Reuss and upper Voigt bound which indicates a low level of compaction. From the velocity–porosity cross plot, it was revealed that the lower portions of the reservoirs were poorly cemented and this could hinder their producibility.
Regularized ridge regression models to estimate static elastic moduli from wireline measurements: case study from Southern Iraq
Springer Science and Business Media LLC - Tập 12 - Trang 1759-1773 - 2021
Husam H. Alkinani, Abo Taleb T. Al-Hameedi, Shari Dunn-Norman, Munir Aldin, Deepak Gokaraju, Andreina Guedez, Atheer M. Alattar
Elastic moduli such as Young’s modulus (E), Poisson’s ratio (v), and bulk modulus (K) are vital to creating geomechanical models for wellbore stability, hydraulic fracturing, sand production, etc. Due to the difficulty of obtaining core samples and performing rock testing, alternatively, wireline measurements can be used to estimate dynamic moduli. However, dynamic moduli are significantly different from elastic moduli due to many factors. In this paper, correlations for three zones (Nahr Umr shale, Zubair shale, and Zubair sandstone) located in southern Iraq were created to estimate static E, K, and ν from dynamic data. Core plugs from the aforementioned three zones alongside wireline measurements for the same sections were acquired. Single-stage triaxial (SST) tests with CT scans were executed for the core plugs. The data were separated into two parts; training (70%), and testing (30%) to ensure the models can be generalized to new data. Regularized ridge regression models were created to estimate static E, K, and ν from dynamic data (wireline measurements). The shrinkage parameter (α) was selected for each model based on an iterative process, where the goal is to ensure having the smallest error. The results showed that all models had testing R2 ranging between 0.92 and 0.997 and consistent with the training results. All models of E, K, and ν were linear besides ν for the Zubair sandstone and shale which were second-degree polynomial. Furthermore, root means squared error (RMSE) and mean absolute error (MAE) were utilized to assess the error of the models. Both RMSE and MAE were consistently low in training and testing without a large discrepancy. Thus, with the regularization of ridge regression and consistent low error during the training and testing, it can be concluded that the proposed models can be generalized to new data and no overfitting can be observed. The proposed models for Nahr Umr shale, Zubair shale, and Zubair sandstone can be utilized to estimate E, K, and ν based on readily available dynamic data which can contribute to creating robust geomechanical models for hydraulic fracturing, sand production, wellbore stability, etc.
Performance evaluation and application of new fuzzy-ball micro bubble treatment fluid
Springer Science and Business Media LLC - Tập 6 - Trang 111-115 - 2015
Huaizhu Liu, LiangChuan Li, Jiapeng Zheng
It is easy to pollute formation using the conventional method of plug channeling when the oil well cement quality is bad. To solve the problem of formation pollution, one new oil layer diverting agent-micro bubble treatment fluid is developed. It cannot reverse rock wettability and cannot stop reservoir fluid flowing. The properties of rheology, static plugging, and dynamic pollution of micro bubble treatment fluid were evaluated. The laboratory experiment proved that the fuzzy-ball micro bubble treatment fluid has good injectability and its viscosity decrease with shear rate. Under the temperature of 120 °C, back pressure of 0.5 MPa and differential pressure of 5 MPa, the leakage of micro bubble was zero. Core permeability recovered ratio was up to 96.1 % after pollution for 48 h. The new fluid has been used on four wells in Jidong Oilfield. The results of pilot test showed that the effect of decreasing produced water and increasing oil production was very obvious. The cumulative quantity of oil was 12,435 t; the cumulative decreased quantity of water was 32,496 cubic meters and the average water cut had decreased by 17.6 %. The application effect indicates that it not only can reduce the operating risk but also has good plug channeling and layer protecting effect. After it is used on spot, the effect of increasing oil production and reducing aquifer yield is obvious, and the period of validity is longer.
Tổng số: 1,211   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 122