Springer Science and Business Media LLC
1758-2946
Cơ quản chủ quản: BMC , Chemistry Central
Các bài báo tiêu biểu
Natural products (NPs) are small molecules produced by living organisms with potential applications in pharmacology and other industries as many of them are bioactive. This potential raised great interest in NP research around the world and in different application fields, therefore, over the years a multiplication of generalistic and thematic NP databases has been observed. However, there is, at this moment, no online resource regrouping all known NPs in just one place, which would greatly simplify NPs research and allow computational screening and other
There are two line notations of chemical structures that have established themselves in the field: the SMILES string and the InChI string. The InChI aims to provide a unique, or canonical, identifier for chemical structures, while SMILES strings are widely used for storage and interchange of chemical structures, but no standard exists to generate a canonical SMILES string.
I describe how to use the InChI canonicalisation to derive a canonical SMILES string in a straightforward way, either incorporating the InChI normalisations (Inchified SMILES) or not (Universal SMILES). This is the first description of a method to generate canonical SMILES that takes stereochemistry into account. When tested on the 1.1 m compounds in the ChEMBL database, and a 1 m compound subset of the PubChem Substance database, no canonicalisation failures were found with Inchified SMILES. Using Universal SMILES, 99.79% of the ChEMBL database was canonicalised successfully and 99.77% of the PubChem subset.
The InChI canonicalisation algorithm can successfully be used as the basis for a common standard for canonical SMILES. While challenges remain – such as the development of a standard aromatic model for SMILES – the ability to create the same SMILES using different toolkits will mean that for the first time it will be possible to easily compare the chemical models used by different toolkits.
We present SMILES-embeddings derived from the internal encoder state of a Transformer [1] model trained to canonize SMILES as a Seq2Seq problem. Using a CharNN [2] architecture upon the embeddings results in higher quality interpretable QSAR/QSPR models on diverse benchmark datasets including regression and classification tasks. The proposed Transformer-CNN method uses SMILES augmentation for training and inference, and thus the prognosis is based on an internal consensus. That both the augmentation and transfer learning are based on embeddings allows the method to provide good results for small datasets. We discuss the reasons for such effectiveness and draft future directions for the development of the method. The source code and the embeddings needed to train a QSAR model are available on
The reproducibility of experiments has been a long standing impediment for further scientific progress. Computational methods have been instrumental in drug discovery efforts owing to its multifaceted utilization for data collection, pre-processing, analysis and inference. This article provides an in-depth coverage on the reproducibility of computational drug discovery. This review explores the following topics: (1) the current state-of-the-art on reproducible research, (2) research documentation (e.g. electronic laboratory notebook, Jupyter notebook, etc.), (3) science of reproducible research (i.e. comparison and contrast with related concepts as replicability, reusability and reliability), (4) model development in computational drug discovery, (5) computational issues on model development and deployment, (6) use case scenarios for streamlining the computational drug discovery protocol. In computational disciplines, it has become common practice to share data and programming codes used for numerical calculations as to not only facilitate reproducibility, but also to foster collaborations (i.e. to drive the project further by introducing new ideas, growing the data, augmenting the code, etc.). It is therefore inevitable that the field of computational drug design would adopt an open approach towards the collection, curation and sharing of data/code.