ChemDes: an integrated web-based platform for molecular descriptor and fingerprint computation

Jie Dong1, Dong−Sheng Cao1, Hongyu Miao2, Lei Shao3, Baichuan Deng4, Yong‐Huan Yun4, Ningning Wang1, Aiping Lü5, Wenbin Zeng1, Alex F. Chen1
1School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, People’s Republic of China
2Department of Biostatistics, School of Public Health, University of Texas Health Science Center at Houston, Houston, USA
3Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People’s Republic of China
4College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People’s Republic of China
5Institute of Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Todeschini R, Consonni V (2008) Handbook of molecular descriptors, vol 11. Wiley, New Jersey

Geppert H, Vogt M, Bajorath J (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 50(2):205–216

Roy K, Mitra I (2012) Electrotopological state atom (E-state) index in drug design, QSAR, property prediction and toxicity assessment. Curr Comput Aided Drug Des 8(2):135–158

Berenger F, Voet A, Lee XY, Zhang KYJ (2014) A rotation-translation invariant molecular descriptor of partial charges and its use in ligand-based virtual screening. J Cheminformatics 6:23

Viswanadhan VN, Rajesh H, Balaji VN (2011) Atom type preferences, structural diversity, and property profiles of known drugs, leads, and nondrugs: a comparative assessment. Acs Comb Sci 13(3):327–336

Cao D, Zhou G, Liu S, Zhang L, Xu Q, He M, Liang Y (2013) Large-scale prediction of human kinase-inhibitor interactions using protein sequences and molecular topological structures. Anal Chim Acta 792:10–18

Khan MTH (2010) Predictions of the ADMET properties of candidate drug molecules utilizing different QSAR/QSPR modelling approaches. Curr Drug Metab 11(4):285–295

Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52(11):3099–3105

Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11(23–24):1046–1053

Cereto-Massague A, Jose Ojeda M, Valls C, Mulero M, Garcia-Vallve S, Pujadas G (2015) Molecular fingerprint similarity search in virtual screening. Methods 71:58–63

Heikamp K, Bajorath J (2012) Fingerprint design and engineering strategies: rationalizing and improving similarity search performance. Future Med Chem 4(15SI):1945–1959

Cao D, Dong J, Wang N, Wen M, Deng B, Zeng W, Xu Q, Liang Y, Lu A, Chen AF (2015) In silico toxicity prediction of chemicals from EPA toxicity database by kernel fusion-based support vector machines. Chemometr Intell Lab 146:494–502

Cao D, Yang Y, Zhao J, Yan J, Liu S, Hu Q, Xu Q, Liang Y (2012) Computer-aided prediction of toxicity with substructure pattern and random forest. J Chemometr 26(1):7–15

Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V (2010) Advances in computational methods to predict the biological activity of compounds. Expert Opin Drug Dis 5(7):633–654

Lv W, Xue Y (2010) Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods. Eur J Med Chem 45(3):1167–1172

Kombo DC, Tallapragada K, Jain R, Chewning J, Mazurov AA, Speake JD, Hauser TA, Toler S (2013) 3D molecular descriptors important for clinical success. J Chem Inf Model 53(2):327–342

Campillos M, Kuhn M, Gavin AC, Jensen LJ, Bork P (2008) Drug target identification using side-effect similarity. Science 321(5886):263–266

Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25(2):197–206

He Z, Zhang J, Shi X, Hu L, Kong X, Cai Y, Chou K (2010) Predicting drug-target interaction networks based on functional groups and biological features. Plos One 5(3):e9603

van Westen GJP, Wegner JK, IJzerman AP, van Vlijmen HWT, Bender A (2011) Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets. Medchemcomm 2(1):16–30

Strombergsson H, Lapins M, Kleywegt GJ, Wikberg JLES (2010) Towards proteome-wide interaction models using the proteochemometrics approach. Mol Inform 29(6–7):499–508

Dakshanamurthy S, Issa NT, Assefnia S, Seshasayee A, Peters OJ, Madhavan S, Uren A, Brown ML, Byers SW (2012) Predicting new indications for approved drugs using a proteochemometric method. J Med Chem 55(15):6832–6848

Perot S, Sperandio O, Miteva MA, Camproux A, Villoutreix BO (2010) Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discov Today 15(15–16):656–667

Cao D, Xiao N, Xu Q, Chen AF (2015) Rcpi: R/Bioconductor package to generate various descriptors of proteins, compounds and their interactions. Bioinformatics 31(2):279–281

Gonzalez-Diaz H, Vilar S, Santana L, Uriarte E (2007) Medicinal chemistry and bioinformatics-current trends in drugs discovery with networks topological indices. Curr Top Med Chem 7(10):1015–1029

Dimitrov I, Naneva L, Doytchinova I, Bangov I (2014) AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics 30(6):846–851

DRAGON ( http://www.talete.mi.it/products/dragon_description.htm ). Accessed 1 Dec 2015

BlueDesc ( http://www.ra.cs.uni-tuebingen.de/software/bluedesc/welcome_e.html ). Accessed 1 Dec 2015

CDK Descriptor Calculator ( http://www.rguha.net/code/java/cdkdesc.html ). Accessed 1 Dec 2015

Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32(7):1466–1474

Mold2 ( http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm ). Accessed 1 Dec 2015

ChemAxon JChem ( https://www.chemaxon.com/ ). Accessed 1 Dec 2015

ADMEWORKS ModelBuilder ( http://www.fqs.pl/chemistry_materials_life_science/products/ )

CDK [ http://sourceforge.net/projects/cdk ]

RDKit ( http://sourceforge.net/projects/rdkit/ )

Cao D, Xu Q, Hu Q, Liang Y (2013) ChemoPy: freely available python package for computational biology and chemoinformatics. Bioinformatics 29(8):1092–1094

MOE ( http://www.chemcomp.com/ )

SYBYL-X [ http://www.certara.com/products/molmod/sybyl-x ]

Discovery Studio ( http://accelrys.com/products/discovery-studio/ )

Mopac ( http://openmopac.net/ )

Stewart JJP (2013) Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 19(1):1–32

Stewart JJP (2012) Mopac 2012. Colorado Springs, CO

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: An open chemical toolbox. J Cheminformatics 3:33

Hinselmann G, Rosenbaum L, Jahn A, Fechner N, Zell A (2011) jCompoundMapper: An open source Java library and command-line tool for chemical fingerprints. J Cheminformatics 3:3

JSDraw ( http://www.scilligence.com/web/jsdraw.aspx ). Accessed 1 Dec 2015

Venn Diagram ( https://github.com/benfred/venn.js )

Cao D, Liang Y, Yan J, Tan G, Xu Q, Liu S (2013) PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies. J Chem Inf Model 53(11):3086–3096

Cortes-Ciriano I, van Westen GJP, Lenselink EB, Murrell DS, Bender A, Malliavin T (2014) Proteochemometric modeling in a Bayesian framework. J Cheminformatics 6:35

Gao J, Huang Q, Wu D, Zhang Q, Zhang Y, Chen T, Liu Q, Zhu R, Cao Z, He Y (2013) Study on human GPCR-inhibitor interactions by proteochemometric modeling. Gene 518(1SI):124–131