Respiratory Research

  1465-993X

 

 

Cơ quản chủ quản:  BioMed Central Ltd. , BMC

Lĩnh vực:
Pulmonary and Respiratory Medicine

Phân tích ảnh hưởng

Thông tin về tạp chí

 

Các bài báo tiêu biểu

Prevalence of type-1 interferon autoantibodies in adults with non-COVID-19 acute respiratory failure
Tập 23 - Trang 1-4 - 2022
Rajani Ghale, Natasha Spottiswoode, Mark S. Anderson, Anthea Mitchell, Grace Wang, Carolyn S. Calfee, Joseph L. DeRisi, Charles R. Langelier
Auto-antibodies (Abs) to type I interferons (IFNs) are found in up to 25% of patients with severe COVID-19, and are implicated in disease pathogenesis. It has remained unknown, however, whether type I IFN auto-Abs are unique to COVID-19, or are also found in other types of severe respiratory illnesses. To address this, we studied a prospective cohort of 284 adults with acute respiratory failure due to causes other than COVID-19. We measured type I IFN auto-Abs by radio ligand binding assay and screened for respiratory viruses using clinical PCR and metagenomic sequencing. Three patients (1.1%) tested positive for type I IFN auto-Abs, and each had a different underlying clinical presentation. Of the 35 patients found to have viral infections, only one patient tested positive for type I IFN auto-Abs. Together, our data suggest that type I IFN auto-Abs are uncommon in critically ill patients with acute respiratory failure due to causes other than COVID-19.
Comprehensive analysis reveals the prognostic and immunogenic characteristics of DNA methylation regulators in lung adenocarcinoma
Tập 25 - Trang 1-16 - 2024
Jing Huang, Chujian Huang, Can Huang, Zichang Xiang, Yao Ni, Jian Zeng, Songhua Cai
DNA methylation regulators (DMRs) play a key role in DNA methylation, thus mediating tumor occurrence, metastasis, and immunomodulation. However, the effects of DMRs on clinical outcomes and immunotherapy response remain unexplored in lung adenocarcinoma (LUAD). In this study, eight LUAD cohorts and one immunotherapeutic cohort of lung cancer were utilized. We constructed a DNA methylation regulators-related signature (DMRRS) using univariate and multivariate COX regression analysis. The DMRRS-defined low-risk group was preferentially associated with favorable prognosis, tumor-inhibiting microenvironment, more sensitivity to several targeted therapy drugs, and better immune response. Afterward, the prognostic value and predictive potential in immunotherapy response were validated. Collectively, our findings uncovered that the DMRRS was closely associated with the tumor immune microenvironment and could effectively predict the clinical outcome and immune response of LUAD patients.
PDGF-Rα gene expression predicts proliferation, but PDGF-A suppresses transdifferentiation of neonatal mouse lung myofibroblasts
Tập 10 - Trang 1-17 - 2009
Patricia W Kimani, Amey J Holmes, Ruth E Grossmann, Stephen E McGowan
Platelet-derived growth factor A (PDGF-A) signals solely through PDGF-Rα, and is required for fibroblast proliferation and transdifferentiation (fibroblast to myofibroblast conversion) during alveolar development, because pdgfa-null mice lack both myofibroblasts and alveoli. However, these PDGF-A-mediated mechanisms remain incompletely defined. At postnatal days 4 and 12 (P4 and P12), using mouse lung fibroblasts, we examined (a) how PDGF-Rα correlates with ki67 (proliferation marker) or alpha-smooth muscle actin (αSMA, myofibroblast marker) expression, and (b) whether PDGF-A directly affects αSMA or modifies stimulation by transforming growth factor beta (TGFβ). Using flow cytometry we examined PDGF-Rα, αSMA and Ki67 in mice which express green fluorescent protein (GFP) as a marker for PDGF-Rα expression. Using real-time RT-PCR we quantified αSMA mRNA in cultured Mlg neonatal mouse lung fibroblasts after treatment with PDGF-A, and/or TGFβ. The intensity of GFP-fluorescence enabled us to distinguish three groups of fibroblasts which exhibited absent, lower, or higher levels of PDGF-Rα. At P4, more of the higher than lower PDGF-Rα + fibroblasts contained Ki67 (Ki67+), and Ki67+ fibroblasts predominated in the αSMA + but not the αSMA- population. By P12, Ki67+ fibroblasts comprised a minority in both the PDGF-Rα + and αSMA+ populations. At P4, most Ki67+ fibroblasts were PDGF-Rα + and αSMA- whereas at P12, most Ki67+ fibroblasts were PDGF-Rα- and αSMA-. More of the PDGF-Rα + than - fibroblasts contained αSMA at both P4 and P12. In the lung, proximate αSMA was more abundant around nuclei in cells expressing high than low levels of PDGF-Rα at both P4 and P12. Nuclear SMAD 2/3 declined from P4 to P12 in PDGF-Rα-, but not in PDGF-Rα + cells. In Mlg fibroblasts, αSMA mRNA increased after exposure to TGFβ, but declined after treatment with PDGF-A. During both septal eruption (P4) and elongation (P12), alveolar PDGF-Rα may enhance the propensity of fibroblasts to transdifferentiate rather than directly stimulate αSMA, which preferentially localizes to non-proliferating fibroblasts. In accordance, PDGF-Rα more dominantly influences fibroblast proliferation at P4 than at P12. In the lung, TGFβ may overshadow the antagonistic effects of PDGF-A/PDGF-Rα signaling, enhancing αSMA-abundance in PDGF-Rα-expressing fibroblasts.
Gene expression pattern analysis using dual-color RT-MLPA and integrative genome-wide association studies of eQTL for tuberculosis suscepitibility
- 2021
Jing-Wen Ai, Hanyue Zhang, Zumo Zhou, Shanshan Weng, Heqing Huang, Sen Wang, Lingyun Shao, Yan Gao, Jing Wu, Qiaoling Ruan, Feifei Wang, Ning Jiang, Jiazhen Chen, Wenhong Zhang
When infected with Mycobacterium tuberculosis, only a small proportion of the population will develop active TB, and the role of host genetic factors in different TB infection status was not fully understood. Forty-three patients with active tuberculosis and 49 with latent tuberculosis were enrolled in the prospective cohort. Expressing levels of 27 candidate mRNAs, which were previously demonstrated to differentially expressed in latent and active TB, were measured by dual color reverse transcription multiplex ligation dependent probe amplification assay (dcRT-MLPA). Using expression levels of these mRNAs as quantitative traits, associations between expression abundance and genome-wild single nucleotide polymorphisms (SNPs) were calculated. Finally, identified candidate SNPs were further assessed for their associations with TB infection status in a validation cohort with 313 Chinese Han cases. We identified 9 differentially expressed mRNAs including il7r, il4, il8, tnfrsf1b, pgm5, ccl19, il2ra, marco and fpr1 in the prospective cohort. Through expression quantitative trait loci mapping, we screened out 8 SNPs associated with these mRNAs. Then, CG genotype of the SNP rs62292160 was finally verified to be significantly associated with higher transcription levels of IL4 in LTBI than in TB patients. We reported that the SNP rs62292160 in Chinese Han population may link to higher expression of il4 in latent tuberculosis. Our findings provided a new genetic variation locus for further exploration of the mechanisms of TB and a possible target for TB genetic susceptibility studies, which might aid the clinical decision to precision treatment of TB.
TLR4 signaling is essential for survival in acute lung injury induced by virulent Pseudomonas aeruginosa secreting type III secretory toxins
Tập 5 - Trang 1-10 - 2004
Karine Faure, Teiji Sawa, Temitayo Ajayi, Junichi Fujimoto, Kiyoshi Moriyama, Nobuaki Shime, Jeanine P Wiener-Kronish
The relative contributions of the cytotoxic phenotype of P. aeruginosa expressing type III secretory toxins and an immunocompromised condition lacking normal Toll-like receptor 4 (TLR4) signaling in the pathogenesis of acute lung injury and sepsis were evaluated in a mouse model for Pseudomonas aeruginosa pneumonia. By using lipopolysaccharide-resistant C3H/HeJ mice missing normal TLR4 signaling due to a mutation on the tlr4 gene, we evaluated how TLR4 signaling modulates the pneumonia caused by cytotoxic P. aeruginosa expressing type III secretory toxins. We infected C3H/HeJ or C3H/FeJ mice with three different doses of either a cytotoxic P. aeruginosa strain (wild type PA103) or its non-cytotoxic isogenic mutant missing the type III secretory toxins (PA103ΔUT). Survival of the infected mice was evaluated, and the severity of acute lung injury quantified by measuring alveolar epithelial permeability as an index of acute epithelial injury and the water to dry weight ratios of lung homogenates as an index of lung edema. Bacteriological analysis and cytokine assays were performed in the infected mice. Development of acute lung injury and sepsis was observed in all mouse strains when the cytotoxic P. aeruginosa strain but not the non-cytotoxic strain was instilled in the airspaces of the mice. Only C3H/HeJ mice had severe bacteremia and high mortality when a low dose of the cytotoxic P. aeruginosa strain was instilled in their lungs. The cytotoxic phenotype of P. aeruginosa is the critical factor causing acute lung injury and sepsis in infected hosts. When the P. aeruginosa is a cytotoxic strain, the TLR4 signaling system is essential to clear the batcteria to prevent lethal lung injury and bacteremia.
Mast cells in a murine lung ischemia-reperfusion model of primary graft dysfunction
Tập 15 - Trang 1-9 - 2014
John R Greenland, Xiang Xu, David M Sayah, Feng Chun Liu, Kirk D Jones, Mark R Looney, George H Caughey
Primary graft dysfunction (PGD), as characterized by pulmonary infiltrates and high oxygen requirements shortly after reperfusion, is the major cause of early morbidity and mortality after lung transplantation. Donor, recipient and allograft-handling factors are thought to contribute, although new insights regarding pathogenesis are needed to guide approaches to prevention and therapy. Mast cells have been implicated in ischemic tissue injury in other model systems and in allograft rejection, leading to the hypothesis that mast cell degranulation contributes to lung injury following reperfusion injury. We tested this hypothesis in a mouse model of PGD involving reversible disruption of blood flow to one lung. Metrics of injury included albumin permeability, plasma extravasation, lung histopathology, and mast cell degranulation. Responses were assessed in wild-type (Kit +/+ ) and mast cell-deficient (Kit W-sh/W-sh ) mice. Because mouse lungs have few mast cells compared with human lungs, we also tested responses in mice with lung mastocytosis generated by injecting bone marrow-derived cultured mast cells (BMCMC). We found that ischemic lung responses of mast cell-deficient Kit W-sh/W-sh mice did not differ from those of Kit +/+ mice, even after priming for injury using LPS. Degranulated mast cells were more abundant in ischemic than in non-ischemic BMCMC-injected Kit W-sh/W-sh lungs. However, lung injury in BMCMC-injected Kit W-sh/W-sh and Kit +/+ mice did not differ in globally mast cell-deficient, uninjected Kit W-sh/W-sh mice or in wild-type Kit +/+ mice relatively deficient in lung mast cells. These findings predict that mast cells, although activated in lungs injured by ischemia and reperfusion, are not necessary for the development of PGD.
Dietary phenotype and advanced glycation end-products predict WTC-obstructive airways disease: a longitudinal observational study
Tập 22 - Trang 1-12 - 2021
Rachel Lam, Sophia Kwon, Jessica Riggs, Maria Sunseri, George Crowley, Theresa Schwartz, Rachel Zeig-Owens, Hilary Colbeth, Allison Halpren, Mengling Liu, David J. Prezant, Anna Nolan
Diet is a modifier of metabolic syndrome which in turn is associated with World Trade Center obstructive airways disease (WTC-OAD). We have designed this study to (1) assess the dietary phenotype (food types, physical activity, and dietary habits) of the Fire Department of New York (FDNY) WTC-Health Program (WTC-HP) cohort and (2) quantify the association of dietary quality and its advanced glycation end product (AGE) content with the development of WTC-OAD. WTC-OAD, defined as developing WTC-Lung Injury (WTC-LI; FEV1 < LLN) and/or airway hyperreactivity (AHR; positive methacholine and/or positive bronchodilator response). Rapid Eating and Activity Assessment for Participants-Short Version (REAP-S) deployed on 3/1/2018 in the WTC-HP annual monitoring assessment. Clinical and REAP-S data of consented subjects was extracted (7/17/2019). Diet quality [low-(15–19), moderate-(20–29), and high-(30–39)] and AGE content per REAP-S questionnaire were assessed for association with WTC-OAD. Regression models adjusted for smoking, hyperglycemia, hypertension, age on 9/11, WTC-exposure, BMI, and job description. N = 9508 completed the annual questionnaire, while N = 4015 completed REAP-S and had spirometry. WTC-OAD developed in N = 921, while N = 3094 never developed WTC-OAD. Low- and moderate-dietary quality, eating more (processed meats, fried foods, sugary drinks), fewer (vegetables, whole-grains),and having a diet abundant in AGEs were significantly associated with WTC-OAD. Smoking was not a significant risk factor of WTC-OAD. REAP-S was successfully implemented in the FDNY WTC-HP monitoring questionnaire and produced valuable dietary phenotyping. Our observational study has identified low dietary quality and AGE abundant dietary habits as risk factors for pulmonary disease in the context of WTC-exposure. Dietary phenotyping, not only focuses our metabolomic/biomarker profiling but also further informs future dietary interventions that may positively impact particulate matter associated lung disease.
Maresin-1 reduces the pro-inflammatory response of bronchial epithelial cells to organic dust
Tập 14 - Trang 1-10 - 2013
Tara M Nordgren, Art J Heires, Todd A Wyatt, Jill A Poole, Tricia D LeVan, D Roselyn Cerutis, Debra J Romberger
Exposure to organic dust causes detrimental airway inflammation. Current preventative and therapeutic measures do not adequately treat resulting disease, necessitating novel therapeutic interventions. Recently identified mediators derived from polyunsaturated fatty acids exhibit anti-inflammatory and pro-resolving actions. We tested the potential of one of these mediators, maresin-1 (MaR1), in reducing organic dust-associated airway inflammation. As bronchial epithelial cells (BECs) are pivotal in initiating organic dust-induced inflammation, we investigated the in vitro effects of MaR1 on a human BEC cell line (BEAS-2B). Cells were pretreated for 1 hour with 0–200 nM MaR1, followed by 1–24 hour treatment with 5% hog confinement facility-derived organic dust extract (HDE). Alternatively, a mouse lung slice model was utilized in supportive cytokine studies. Supernatants were harvested and cytokine levels determined via enzyme-linked immunosorbent assays. Epithelial cell protein kinase C (PKC) isoforms α and ϵ, and PKA activities were assessed via radioactivity assays, and NFκB and MAPK-related signaling mechanisms were investigated using luciferase vector reporters. MaR1 dose-dependently reduced IL-6 and IL-8 production following HDE treatment of BECs. MaR1 also reduced HDE-stimulated cytokine release including TNF-α in a mouse lung slice model when given before or following HDE treatment. Previous studies have established that HDE sequentially activates epithelial PKCα and PKCϵ at 1 and 6 hours, respectively that regulated TNF-α, IL-6, and IL-8 release. MaR1 pretreatment abrogated these HDE-induced PKC activities. Furthermore, HDE treatment over a 24-hour period revealed temporal increases in NFκB, AP-1, SP-1, and SRE DNA binding activities, using luciferase reporter assays. MaR1 pretreatment did not alter the activation of NFκB, AP-1, or SP-1, but did reduce the activation of DNA binding at SRE. These observations indicate a role for MaR1 in attenuating the pro-inflammatory responses of BECs to organic dust extract, through a mechanism that does not appear to rely on reduced NFκB, AP-1, or SP-1-related signaling, but may be mediated partly through SRE-related signaling. These data offer insights for a novel mechanistic action of MaR1 in bronchial epithelial cells, and support future in vivo studies to test MaR1’s utility in reducing the deleterious inflammatory effects of environmental dust exposures.
Local heterogeneity of normal lung parenchyma and small airways disease are associated with COPD severity and progression
Alexander J. Bell, Ranjan Pal, Wassim W. Labaki, Benjamin A. Hoff, Jennifer M. Wang, Susan Murray, Ella A. Kazerooni, Stefanie Galbán, David A. Lynch, Stephen Humphries, Fernando J. Martinez, Charles R. Hatt, MeiLan K. Han, Sundaresh Ram, Craig J. Galbán
Abstract Background Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline. Methods PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) were generated from CT scans collected as part of the COPDGene study (n = 8956). Volume density (V) and Euler-Poincaré Characteristic (χ) image maps, measures of the extent and coalescence of pocket formations (i.e., topologies), respectively, were determined for both PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were assessed via multivariable regression models. Readouts were evaluated as inputs for predicting FEV1 decline using a machine learning model. Results Multivariable cross-sectional analysis of COPD subjects showed that V and χ measures for PRMfSAD and PRMNorm were independently associated with the amount of emphysema. Readouts χfSAD (β of 0.106, p < 0.001) and VfSAD (β of 0.065, p = 0.004) were also independently associated with FEV1% predicted. The machine learning model using PRM topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69. Conclusions We demonstrated that V and χ of fSAD and Norm have independent value when associated with lung function and emphysema. In addition, we demonstrated that these readouts are predictive of spirometric decline when used as inputs in a ML model. Our topological PRM approach using PRMfSAD and PRMNorm may show promise as an early indicator of emphysema onset and COPD progression.
Silibinin efficacy in a rat model of pulmonary arterial hypertension using monocrotaline and chronic hypoxia
Tập 20 - Trang 1-12 - 2019
Tingting Zhang, Nanako Kawaguchi, Kenji Yoshihara, Emiko Hayama, Yoshiyuki Furutani, Kayoko Kawaguchi, Takeshi Tanaka, Toshio Nakanishi
C-X-C chemokine receptor type 4 (CXCR4) may be involved in the development of pulmonary arterial hypertension (PAH). CXCR4 inhibitor AMD3100 was described to have a positive effect on the prevention of pulmonary arterial muscularization in PAH models. Silibinin is a traditional medicine that has an antagonistic effect on CXCR4. We investigated the effect of silibinin using rat models of PAH. PAH was induced by a single subcutaneous injection of monocrotaline. The rats were maintained in a chronic hypoxic condition (10% O2) with or without silibinin. To evaluate the efficacy of silibinin on PAH, right ventricular systolic pressure (RVSP), Fulton index (weight ratio of right ventricle to the left ventricle and septum), percent medial wall thickness (% MT), and vascular occlusion score (VOS) were measured and calculated. Immunohistochemical analysis was performed targeting CXCR4 and c-Kit. Reverse transcription-quantitative polymerase chain reaction was performed for the stem cell markers CXCR4, stromal cell derived factor-1 (SDF-1), c-Kit, and stem cell factor (SCF), and the inflammatory markers monocyte chemoattractant protein 1 (MCP1), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNFα). Statistical analyses were performed using t-test and one-way analysis of variance with Bonferroni’s post hoc test. Silibinin treatment for 1 week reduced RVSP and Fulton index. Treatment for 2 weeks reduced RVSP, Fulton index, % MT, and VOS, as well as downregulating the expression of CXCR4, SDF-1, and TNFα in pulmonary arteries. In contrast, treatment for 3 weeks failed to ameliorate PAH. The time-course study demonstrated that RVSP, Fulton index, % MT, and VOS gradually increased over time, with a decrease in the expression of CXCR4 and TNFα occurring after 2 weeks of PAH development. After 3 weeks, SDF-1, c-Kit, and SCF began to decrease and, after 5 weeks, MCP1 and IL-6 gradually accumulated. The CXCR4 inhibitor silibinin can ameliorate PAH, possibly through the suppression of the CXCR4/SDF-1 axis, until the point where PAH becomes a severe and irreversible condition. Silibinin results in reduced pulmonary arterial pressure and delays pulmonary arteriolar occlusion and pulmonary vascular remodeling.