Polymers for Advanced Technologies
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Preparation and characterization of novel semi‐interpenetrating polymer network (semi‐IPN) hydrogels based on partially hydrolyzed polyacrylamide (HPAM) and scleroglucan solution crosslinked with chromium triacetate are described. Effects of scleroglucan concentration on the gelation process and swelling behavior of synthesized hydrogels in different media were investigated using dynamic rheometery and swelling tests, respectively. Oscillatory shear rheology showed that the limiting storage modulus of the semi‐IPN gels increased with increase in scleroglucan concentration. It was also found that the viscous energy dissipating properties of the semi‐IPN gels decreased with increase in the crosslinker concentration of the gelation system. In addition, the loss factor slightly decreased by increasing the scleroglucan content, indicating that the viscous properties of this gelling system decreased more than its elastic properties. The swelling tests showed that the equilibrium swelling ratio (ESR) of the semi‐IPN networks decreased with increase in scleroglucan content, due to the decrease of ionic groups of polyelectrolyte hydrogel. However, the semi‐IPN gels showed lower salt sensitivity in synthetic oil reservoir water as compared with HPAM gels. Therefore, these semi‐IPN hydrogels may be considered potentially good candidates for enhanced oil recovery (EOR) applications. Copyright © 2009 John Wiley & Sons, Ltd.
In recent years, there has been an increase of infectious diseases caused by different microorganisms and the development of antibiotic resistance. In this way, the search for new and efficient antibacterial materials is imperative. The main polysaccharides currently used in the biomedical and pharmaceutical domains are chitin and its derivative chitosan (CH) and alginates (ALG). In this study, a simple technique of Layer by Layer (LbL) of applying polycation CH and polyanion ALG was used to prepare CH/ALG multilayers on cotton samples via the electrostatic assembly with success. The CH/ALG cotton samples (functionalized) were investigated for their antibacterial properties towards
Interpenetrating polymer networks (IPNs) have been the subject of extensive study since their advent in the 1960s. Hydrogel IPN systems have garnered significant attention in the last two decades due to their usefulness in biomedical applications. Of particular interest are the mechanical enhancements observed in “double network” IPN systems which exhibit nonlinear increases in fracture properties despite being composed of otherwise weak polymers. We have built upon pioneering work in this field as well as in responsive IPN systems to develop an IPN system based on end‐linked poly‐(ethylene glycol) (PEG) and loosely crosslinked poly(acrylic acid) (PAA) with hydrogen bond‐ reinforced strain‐hardening behavior in water and high initial Young's moduli under physiologic buffer conditions through osmotically induced pre‐stress. Uniaxial tensile tests and equilibrium swelling measurements were used to study PEG/PAA IPN hydrogels having second networks prepared with varying crosslinking and photoinitiator content, pH, solids content, and comonomers. Studies involving the addition of non‐ionic comonomers and neutralization of the second network showed that template polymerization appears to be important in the formation of mechanically enhanced IPNs. Copyright © 2008 John Wiley & Sons, Ltd.
Ever since the discovery of polymer composites, its potential has been anticipated for numerous applications in various fields such as microelectronics, automobiles, and industrial applications. In this paper, we review filler reinforced polymer composites for its enormous potential in microelectronic applications. The interface and compatibility between matrix and filler have a significant role in property alteration of a polymer nanocomposites. Ceramic reinforced polymeric nanocomposites are promising candidate dielectric materials for several micro‐ and nano‐electronic devices. Because of its synergistic effect like high thermal conductivity, low thermal expansion, and dielectric constant of ceramic fillers with the polymer matrix, the resultant nanocomposites have high dielectric breakdown strength. The thermal and dielectric properties are discussed in the view of filler alignment techniques and its effect on the composites. Furthermore, the effect of various surface modified filler materials in polymer matrix, concepts of network forming using filler, and benefits of filler alignment are also discussed in this work. As a whole, this review article addresses the overall view to novice researchers on various properties such as thermal and dielectric properties of polymer matrix composites and direction for future research to be carried out.
Composite polymer electrolytes based on room temperature ionic liquids and polyether have been designed and synthesized. All room temperature ionic liquids which contain short poly(ethylene oxide) chains have good compatibility with the prepolymer, polyether based on polysiloxane. An ultraviolet polymerization method was utilized for the curing of the composite polymer electrolytes. The composite polymer electrolytes which are composed of the room temperature ionic liquids and polyether based on polysiloxane showed high ionic conductivity and high thermal stability. The ionic conductivity of the composite polymer electrolytes is nearly two magnitudes higher than those electrolytes with pure polyether based on polysiloxane. A maximum conductivity of 1.05 × 10−3 S/cm−1 is achieved at 30°C. Thermogravimetic analysis revealed scarcely any thermal weight loss at 80°C and thermal decomposition of the composite polymer electrolytes had not been observed up to 250°C. It retains electrochemical stable till 4.2 V which is acceptable. Copyright © 2006 John Wiley & Sons, Ltd.
Improved ultrafiltration membranes were prepared by the phase inversion technique via immersion precipitation of synthesized carboxylic acid containing polyamide (CPA) and polyethersulfone (PES) in dimethylacetamide. The CPA was synthesized and characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance, thermogravimetric analysis, and differential scanning calorimetry analyses. Next, the influence of CPA adding and its different concentrations on the performances and membrane structure were investigated. The obtained membranes were characterized by means of FTIR in the attenuated total reflection mode, scanning electron microscopy, and contact angle. The membrane performance studies revealed that the presence of CPA in the membrane structure increased water permeability while reducing protein fouling. It turned out that the PES/CPA membranes had better porosity, more hydrophilic surface, and more vertically finger‐like pores in comparison with the bare PES membrane. When the CPA concentration in the blending solution reached 1 wt%, the water permeability increased from 7.3 to 153.6 L/m2 h1. The attenuated total reflection‐FTIR analysis confirmed that CPA was captured in the membrane matrix.
In the present work, nanofibrous composite polymer electrolytes consist of polyethylene oxide (PEO), ethylene carbonate (EC), propylene carbonate (PC), lithium perchlorate (LiClO4), and titanium dioxide (TiO2) were designed using response surface method (RSM) and synthesized via an electrospinning process. Morphological properties of the as‐prepared electrolytes were studied using SEM. FTIR spectroscopy was conducted to investigate the interaction between the components of the composites. The highest room temperature ionic conductivity of 0.085 mS.cm−1 was obtained with incorporation of 0.175 wt. % TiO2 filler into the plasticized nanofibrous electrolyte by EC. Moreover, the optimum structure was compared with a film polymeric electrolyte prepared using a film casting method. Despite more amorphous structure of the film electrolyte, the nanofibrous electrolyte showed superior ion conductivity possibly due to the highly porous structure of the nanofibrous membranes. Furthermore, the mechanical properties illustrated slight deterioration with incorporation of the TiO2 nanoparticles into the electrospun electrolytes. This investigation indicated the great potential of the electrospun structures as all‐solid‐state polymeric electrolytes applicable in lithium ion batteries.
Dimer acid‐based polyamides were synthesized by condensation polymerization in the absence and presence of monofunctional reactants. Acetic acid, oleic acid and propyl amine were used as monofunctional reactants. The influences of the equivalent percentage (E%) and type of monofunctional reactant on the physical properties of dimer acid‐based polyamides such as glass transition temperature (
A kind of polyhedral oligomeric silsesquioxanes (POSS) containing the propoxyl‐epoxy and phenyl groups (pr‐ep‐Ph‐POSS) was synthesized via hydrolytic condensation reaction. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry identified the structure of the pr‐ep‐Ph‐POSS, including major caged Si6O9 (T6), Si10O15 (T10), Si12O18 (T12), etc. The pr‐ep‐Ph‐POSS was applied into the epoxy resin to achieve EP/pr‐ep‐Ph‐POSS composites. Thermogravimetric analysis indicated that EP/pr‐ep‐Ph‐POSS showed excellent thermal properties than pure EP. The fire behaviors of EP/pr‐ep‐Ph‐POSS composites were evaluated based on the cone calorimetry, limiting oxygen index (LOI), UL‐94 vertical burning test, and smoke density test. The smoke density decreased by ~30%, the LOI value reached to 26.4%, dripping was inhibited, and the peak of heat release rate decreased by ~62%. X‐ray photoelectron spectroscopy analysis and FTIR indicated that protective‐barrier effect is the main flame‐retardant mode of action for pr‐ep‐Ph‐POSS, due to the formation of the Si‐O‐Si, Si‐O‐C, and Si‐C condensed phase, which improve the thermal stability, strength, and integrity of the char layer.
- 1
- 2
- 3
- 4
- 5
- 6
- 7