Neurotoxicity Research
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Plasticity at hippocampal to prefrontal cortex synapses is impaired by loss of dopamine and stress: Importance for psychiatric diseases
Neurotoxicity Research - Tập 6 - Trang 233-244 - 2004
The direct hippocampal to prefrontal cortex pathway and its changes in synaptic plasticity is a useful framework for investigating the functional operations of hippocampal-prefrontal cortex communication in cognitive functions. Synapses on this pathway are modifiable and synaptic strength can be turned up or down depending on specific patterns of activity in the pathway. The objective of this review will be to summarize the different studies carried out on this topic including very recent data and to underline the importance of animal models for the development of new and effective medications in psychiatric diseases. We have shown that long-term potentiation (LTP) of hippocampal-pre-frontal synapses is driven by the level of mesocortical dopaminergic (DA) activity and more recently that stress is also an environmental determinant of LTP at these cortical synapses. Stimulation of the ventral tegmental area at a frequency known to evoke DA overflow in the prefrontal cortex produces a long-lasting enhancement of the magnitude of hippocampal-prefrontal cortex LTP whereas a depletion of cortical DA levels generates a dramatic decrease in this LTP. Moreover, hippocampal stimulation induces a transient but significant increase in DA release in the prefrontal cortex, and an optimal level of D1 receptor activation is essential for LTP expression. We recently investigated the impact of stress on hippocampal-prefrontal LTP and demonstrated that exposure to an acute stress causes a remarkable and long-lasting inhibition of LTP. Furthermore, we demonstrated that tianeptine, an antidepressant which has a unique mode of action, and clozapine, an atypical antipsychotic when administered at doses normally used in human testing, are able to reverse the impairment in LTP. Stressful life events have a substantial causal association with psychiatric disorders like schizophrenia and depression and recent imaging studies have shown an important role of the limbic-cortical circuit in the pathophysiology of these illnesses. Therefore, we proposed that agents capable of reversing the impairment of plasticity at hippocampal to prefrontal cortex synapses have the potential of becoming new therapeutic classes of antidepressant or antipsychotic drugs.
Pinocembrin-7-Methylether Protects SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity via Modulating Nrf2 Induction Through AKT and ERK Pathways
Neurotoxicity Research - - 2021
(S)-ZJM-289 Preconditioning Induces a Late Phase Protection Against Nervous Injury Induced by Transient Cerebral Ischemia and Oxygen-Glucose Deprivation
Neurotoxicity Research - Tập 26 - Trang 16-31 - 2013
(S)-ZJM-289, a novel nitric oxide (NO)-releasing derivative of 3-n-butylphthalide, induces the neuroprotection in a rat model of focal cerebral ischemia/reperfusion (I/R). However, much is unknown about the late phase effect in the neuroprotection of (S)-ZJM-289 preconditioning. The purpose of this study is to explore the late phase neuroprotection of (S)-ZJM-289 preconditioning, as well as underlying mechanisms involved. Preconditioning with 40–160 mg/kg, (S)-ZJM-289 significantly reduces brain damage after I/R. (S)-ZJM-289 preconditioning is effective when applied 1–3 days before I/R. Moreover, the degrees of neuroprotection offered by (S)-ZJM-289 preconditioning and ischemic preconditioning are virtually identical. (S)-ZJM-289 preconditioning also protects primary cultured cortical neurons against oxygen-glucose deprivation and recovery-induced cytotoxicity in vitro. (S)-ZJM-289 preconditioning significantly increases the generation of NO, but has no effect on the nitric oxide synthase activities. Additionally, (S)-ZJM-289 preconditioning promotes the dissociation between nuclear-factor-E2-related factor (Nrf2) and kelch-like ECH-associated protein 1, and induces Nrf2 nuclear localization. The neuroprotection of (S)-ZJM-289 preconditioning is blocked by Nrf2-siRNA in vitro. (S)-ZJM-289 preconditioning up-regulates antioxidant enzymes against nervous injury. (S)-ZJM-289 preconditioning significantly activates extracellular regulated protein kinases (ERK) and inhibits c-Jun N-terminal kinases signaling cascade. The neuroprotection is abolished by the ERK inhibitor PD98059 in vitro. Subsequently, (S)-ZJM-289 preconditioning increases the levels of anti-apoptotic protein B cell lymphoma 2 (Bcl-2) and inhibited the translocation of Bcl-2 associated X to the mitochondria, thus attenuating the release of cytochrome c from the mitochondria and the activation of downstream caspase. These results suggest that (S)-ZJM-289 preconditioning exerts the late phase protection against nervous injury induced by transient cerebral ischemia and oxygen-glucose deprivation.
Quercetin Exhibits α7nAChR/Nrf2/HO-1-Mediated Neuroprotection Against STZ-Induced Mitochondrial Toxicity and Cognitive Impairments in Experimental Rodents
Neurotoxicity Research - Tập 39 - Trang 1859-1879 - 2021
The objective of the present study was to investigate the α7nAChR-mediated Nrf2-dependant protective activity against streptozotocin (STZ)-induced brain mitochondrial toxicity in Alzheimer’s disease (AD)-like rats. STZ (3 mg/kg) was injected through an intracerebroventricular route to induce AD-like dementia. Repeated Quercetin (50 mg/kg, i.p.) administration attenuated cognitive impairments in the STZ-challenged animals during Morris water-maze and Y-maze tests. Quercetin significantly mitigated the STZ-induced increase in cholinergic dysfunction, such as the increase in acetylcholinesterase activity, decrease in acetylcholine level, and activity of choline acetyltransferase, and increase in amyloid-beta aggregation and mitochondrial toxicity in respect of mitochondrial bioenergetics, integrity, and oxidative stress in memory-challenged rat hippocampus, prefrontal cortex and, amygdala. Further, Quercetin significantly attenuated STZ-induced reduction in the α7nAChRs and HO-1 expression levels in the selected rat brain regions. On the contrary, trigonelline (10 mg/kg, i.p.) and methyllycaconitine (2 mg/kg; i.p.) abolished the neuroprotective effects of Quercetin against STZ-induced behavioral, molecular, and biochemical alterations in the AD-like animals. Hence, Quercetin exhibits α7nAChR/Nrf2/HO-1-mediated neuroprotection against STZ-challenged AD-like animals. Thus, Quercetin could be considered as a potential therapeutic option in the management of AD.
Tramadol: a Potential Neurotoxic Agent Affecting Prefrontal Cortices in Adult Male Rats and PC-12 Cell Line
Neurotoxicity Research - Tập 38 - Trang 385-397 - 2020
Tramadol is a synthetic analogue of codeine that is often prescribed for the treatment of mild to moderate pains. It has a number of side effects including emotional instability and anxiety. In this study, we focus on the structural and functional changes of prefrontal cortex under chronic exposure to tramadol. At the cellular level, the amounts of ROS and annexin V in PC12 cells were evidently increased upon exposure to tramadol (at a concentration of 600 μM for 48 h). To this end, the rats were daily treated with tramadol at doses of 50 mg/kg for 3 weeks. Our findings reveal that tramadol provokes atrophy and apoptosis by the induction of apoptotic markers such as Caspase 3 and 8, pro-inflammatory markers, and downregulation of GDNF. Moreover, it triggers microgliosis and astrogliosis along with neuronal death in the prefrontal cortex. Behavioral disturbance and cognitive impairment are other side effects of tramadol. Overall, our results indicate tramadol-induced neurodegeneration in the prefrontal cortex mainly through activation of neuroinflammatory response.
The Level of proBDNF in Blood Lymphocytes Is Correlated with that in the Brain of Rats with Photothrombotic Ischemic Stroke
Neurotoxicity Research - - 2019
Methylglyoxal Causes Cell Death in Neural Progenitor Cells and Impairs Adult Hippocampal Neurogenesis
Neurotoxicity Research - Tập 29 - Trang 419-431 - 2015
Methylglyoxal (MG) is formed during normal metabolism by processes like glycolysis, lipid peroxidation, and threonine catabolism, and its accumulation is associated with various degenerative diseases, such as diabetes and arterial atherogenesis. Furthermore, MG has also been reported to have toxic effects on hippocampal neurons. However, these effects have not been studied in the context of neurogenesis. Here, we report that MG adversely affects hippocampal neurogenesis and induces neural progenitor cell (NPC) death. MG significantly reduced C17.2 NPC proliferation, and high concentration of MG (500 μM) induced cell death and elevated oxidative stress. Further, MG was found to activate the ERK signaling pathway, indicating elevated stress response. To determine the effects of MG in vivo, mice were administrated with vehicle or MG (0.5 or 1 % in drinking water) for 4 weeks. The numbers of BrdU-positive cells in hippocampi were significantly lower in MG-treated mice, indicating impaired neurogenesis, but MG did not induce neuronal damage or glial activations. Interestingly, MG reduced memory retention when administered to mice at 1 % but not at 0.5 %. In addition, the levels of hippocampal BDNF and synaptophysin were significantly lower in the hippocampi of mice treated with MG at 1 %. Collectively, our findings suggest MG could be harmful to NPCs and to hippocampal neurogenesis.
Comparison of the Psychopharmacological Effects of Tiletamine and Ketamine in Rodents
Neurotoxicity Research - Tập 32 - Trang 544-554 - 2017
The glutamate N-methyl-d-aspartate (NMDA) receptor antagonist ketamine (KET) produces rapid and sustained antidepressant effects in patients. Tiletamine (TIL; 2-ethylamino-2-thiophen-2-yl-cyclohexan-1-one) is another uncompetitive NMDA receptor antagonist, used in a medical (veterinary) setting as an anesthetic tranquilizer. Here, we compared the behavioral actions of KET and TIL in a variety of tests, focusing on antidepressant-like and dissociative-like effects in mice and rats. The minimum effective doses of KET and TIL were 10 mg/kg to reduce mouse forced swim test immobility and 15 mg/kg to reduce marble-burying behavior. However, at similar doses, both compounds diminished locomotor activity and disturbed learning processes in the mouse passive avoidance test and the rat novel object recognition test. KET and TIL also reduced social behavior and accompanying 50-kHz “happy” ultrasonic vocalizations (USVs) in rats. TIL (5–15 mg/kg) displayed additional anxiolytic-like effects in the four-plate test. Neither KET nor TIL affected pain response in the hot plate test. Examination of the “side effects” revealed that only at the highest doses investigated did both compounds produce motor deficits in the rotarod test in mice. While KET produced behavioral effects at doses comparable between species, in the rats, TIL was ~10 times more potent than in the mice. In summary, antidepressant-like properties of both KET and TIL are similar, as are their adverse effect liabilities. We suggest that TIL could be an alternative to KET as an antidepressant with an additional anxiolytic-like profile.
Antidepressant-Like Activity of Typical Antidepressant Drugs in the Forced Swim Test and Tail Suspension Test in Mice Is Augmented by DMPX, an Adenosine A2A Receptor Antagonist
Neurotoxicity Research - Tập 35 - Trang 344-352 - 2018
Unsatisfactory therapeutic effects of currently used antidepressants force to search for new pharmacological treatment strategies. Recent research points to the relationship between depressive disorders and the adenosinergic system. Therefore, the main goal of our studies was to evaluate the effects of DMPX (3 mg/kg, i.p.), which possesses selectivity for adenosine A2A receptors versus A1 receptors, on the activity of imipramine (15 mg/kg, i.p.), escitalopram (2.5 mg/kg, i.p.), and reboxetine (2 mg/kg, i.p.) given in subtherapeutic doses. The studies carried out using the forced swim and tail suspension tests in mice showed that DMPX at a dose of 6 and 12 mg/kg exerts antidepressant-like effect and does not affect the locomotor activity. Co-administration of DMPX at a dose of 3 mg/kg with the studied antidepressant drugs caused the reduction of immobility time in both behavioral tests. The observed effect was not associated with an increase in the locomotor activity. To evaluate whether the observed effects were due to a pharmacokinetic/pharmacodynamic interaction, the levels of the antidepressants in blood and brain were measured using high-performance liquid chromatography. It can be assumed that the interaction between DMPX and imipramine was exclusively pharmacodynamic in nature, whereas an increased antidepressant activity of escitalopram and reboxetine was at least partly related to its pharmacokinetic interaction with DMPX.
Adult Endogenous Dopaminergic Neuroregeneration Against Parkinson’s Disease: Ideal Animal Models?
Neurotoxicity Research - Tập 39 - Trang 504-532 - 2020
Parkinson’s disease (PD) is the second most common neurodegenerative disease. The etiology of PD remains an enigma with no available disease modifying treatment or cure. Pharmacological compensation is the only quality of life improving treatments available. Endogenous dopaminergic neuroregeneration has recently been considered a plausible therapeutic strategy for PD. However, researchers have to first decipher the complexity of adult endogenous neuroregeneration. This raises the need of animal models to understand the underlying molecular basis. Mammalian models with highly conserved genetic homology might aid researchers to identify specific molecular mechanisms. However, the scarcity of adult neuroregeneration potential in mammals obfuscates such investigations. Nowadays, non-mammalian models are gaining popularity due to their explicit ability to neuroregenerate naturally without the need of external enhancements, yet these non-mammals have a much diverse gene homology that critical molecular signals might not be conserved across species. The present review highlights the advantages and disadvantages of both mammalian and non-mammalian animal models that can be essentially used to study the potential of endogenous DpN regeneration against PD.
Tổng số: 1,424
- 1
- 2
- 3
- 4
- 5
- 6
- 10