Activation of PI3k/Akt/mTOR Signaling Induces Deposition of p-tau to Promote Aluminum Neurotoxicity

Neurotoxicity Research - Tập 40 Số 5 - Trang 1516-1525 - 2022
Yirong Xu1, Guangheng Zhang2, Yingying Zhao2, Bo Fan2, Yeping Zhang2
1Shanxi Medical University Fenyang College
2Pathology Department, Shanxi Medical University Fenyang College, Fenyang, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Baas PW, Qiang L (2019) Tau: it’s not what you think. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2019.02.007

Bockaert J, Marin P (2015) mTOR in brain physiology and pathologies. Physiol Rev 95(4):1157–1187. https://doi.org/10.1152/physrev.00038.2014

Chai J, Wang Y, Li H, He W, Zou W, Zhou Y, Hu X, Chai Q (2016) Distribution of postsynaptic density protein 95 (PSD95) and synaptophysin during neuronal maturation. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 32(12):1619–1622

Chiroma SM, Mohd Moklas MA, Mat Taib CN, Baharuldin MTH, Amon Z (2018) d-galactose and aluminium chloride induced rat model with cognitive impairments. Biomed Pharmacother 103:1602–1608. https://doi.org/10.1016/j.biopha.2018.04.152

Chong ZZ (2015) mTOR: a novel therapeutic target for diseases of multiple systems. Curr Drug Targets 16(10):1107–1132. https://doi.org/10.2174/1389450116666150408103448

Colomina MT, Peris-Sampedro F (2017) Aluminum and Alzheimer’s disease. Adv Neurobiol 18:183–197. https://doi.org/10.1007/978-3-319-60189-2_9

Ersahin T, Tuncbag N, Cetin-Atalay R (2015) The PI3K/AKT/mTOR interactive pathway. Mol Biosyst 11(7):1946–1954. https://doi.org/10.1039/c5mb00101c

Gabbouj S, Ryhanen S, Marttinen M, Wittrahm R, Takalo M, Kemppainen S, Martiskainen H, Tanila H, Haapasalo A, Hiltunen M, Natunen T (2019) Altered insulin signaling in Alzheimer’s disease brain - special emphasis on PI3K-Akt pathway. Front Neurosci 13:629. https://doi.org/10.3389/fnins.2019.00629

Graber TE, McCamphill PK, Sossin WS (2013) A recollection of mTOR signaling in learning and memory. Learn Mem 20(10):518–530. https://doi.org/10.1101/lm.027664.112

Huganir RL, Nicoll RA (2013) AMPARs and synaptic plasticity: the last 25 years. Neuron 80(3):704–717. https://doi.org/10.1016/j.neuron.2013.10.025

Johnson VJ, Sharma RP (2003) Aluminum disrupts the pro-inflammatory cytokine/neurotrophin balance in primary brain rotation-mediated aggregate cultures: possible role in neurodegeneration. Neurotoxicology 24(2):261–268. https://doi.org/10.1016/S0161-813X(02)00194-8

Leal G, Comprido D, Duarte CB (2014) BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology 76(Pt C):639–656. https://doi.org/10.1016/j.neuropharm.2013.04.005

Li H, Xue X, Li L, Li Y, Wang Y, Huang T, Wang Y, Meng H, Pan B, Niu Q (2020) Aluminum-induced synaptic plasticity impairment via PI3K-Akt-mTOR signaling pathway. Neurotox Res 37(4):996–1008. https://doi.org/10.1007/s12640-020-00165-5

Liang RF, Li WQ, Wang XH, Zhang HF, Wang H, Wang JX, Zhang Y, Wan MT, Pan BL, Niu Q (2012) Aluminium-maltolate-induced impairment of learning, memory and hippocampal long-term potentiation in rats. Ind Health 50(5):428–436. https://doi.org/10.2486/indhealth.ms1330

Liu M, Sui D, Dexheimer T, Hovde S, Deng X, Wang KW, Lin HL, Chien HT, Kweon HK, Kuo NS, Ayoub CA, Jimenez-Harrison D, Andrews PC, Kwok R, Bochar DA, Kuret J, Fortin J, Tsay YG, Kuo MH (2020) Hyperphosphorylation renders tau prone to aggregate and to cause cell death. Mol Neurobiol 57(11):4704–4719. https://doi.org/10.1007/s12035-020-02034-w

Lu J, Gu L, Li Q, Wu N, Li H, Zhang X (2021) Andrographolide emeliorates maltol aluminium-induced neurotoxicity via regulating p62-mediated Keap1-Nrf2 pathways in PC12 cells. Pharm Biol 59(1):232–241. https://doi.org/10.1080/13880209.2021.1883678

M'Rad I, Jeljeli M, Rihane N, Hilber P, Sakly M, Amara S (2018) Aluminium oxide nanoparticles compromise spatial learning and memory performance in rats. EXCLI J 17:200–210. https://doi.org/10.17179/excli2017-1050

Mold MJ, O’Farrell A, Morris B, Exley C (2021) Aluminum and tau in neurofibrillary tangles in familial Alzheimer’s disease. J Alzheimers Dis Rep 5(1):283–294. https://doi.org/10.3233/ADR-210011

Mueed Z, Tandon P, Maurya SK, Deval R, Kamal MA, Poddar NK (2018) Tau and mTOR: the hotspots for multifarious diseases in Alzheimer’s development. Front Neurosci 12:1017. https://doi.org/10.3389/fnins.2018.01017

Nday CM, Drever BD, Salifoglou T, Platt B (2010) Aluminium interferes with hippocampal calcium signaling in a species-specific manner. J Inorg Biochem 104(9):919–927. https://doi.org/10.1016/j.jinorgbio.2010.04.010

O’Neill C (2013) PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease

Pan B, Li Y, Zhang J, Zhou Y, Li L, Xue X, Li H, Niu Q (2020) Role of mGluR 1 in synaptic plasticity impairment induced by maltol aluminium in rats. Environ Toxicol Pharmacol 78:103406. https://doi.org/10.1016/j.etap.2020.103406

Prvulovic D, Hampel H (2011) Amyloid β (Aβ) and phospho-tau (p-tau) as diagnostic biomarkers in Alzheimer’s disease. Clin Chem Lab Med. https://doi.org/10.1515/CCLM.2011.087

Querfurth H, Lee HK (2021) Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 16(1):44. https://doi.org/10.1186/s13024-021-00428-5

Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608. https://doi.org/10.15252/emmm.201606210

Shang N, Zhang P, Wang S, Chen J, Fan R, Chen J, Huang T, Wang Y, Duncan J, Zhang L, Niu Q, Zhang Q (2020) Aluminum-induced cognitive impairment and PI3K/Akt/mTOR signaling pathway involvement in occupational aluminum workers. Neurotox Res 38(2):344–358. https://doi.org/10.1007/s12640-020-00230-z

Shu Y, Zhang H, Kang T, Zhang JJ, Yang Y, Liu H, Zhang L (2013) PI3K/Akt signal pathway involved in the cognitive impairment caused by chronic cerebral hypoperfusion in rats. PLoS ONE 8(12):e81901. https://doi.org/10.1371/journal.pone.0081901

Skalny AV, Aschner M, Jiang Y, Gluhcheva YG, Tizabi Y, Lobinski R, Tinkov AA (2021) Molecular mechanisms of aluminum neurotoxicity: update on adverse effects and therapeutic strategies. Adv Neurotoxicol 5:1–34. https://doi.org/10.1016/bs.ant.2020.12.001

Song J, Gao T, Li W (2022) The palmitoylation/depalmitoylation cycle is involved in the inhibition of AMPA receptor trafficking induced by aluminum in vitro. Biol Trace Elem Res. https://doi.org/10.1007/s12011-022-03234-2

Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS ONE 5(4):e9979. https://doi.org/10.1371/journal.pone.0009979

Sui L, Wang J, Li BM (2008) Role of the phosphoinositide 3-kinase-Akt-mammalian target of the rapamycin signaling pathway in long-term potentiation and trace fear conditioning memory in rat medial prefrontal cortex. Learn Mem 15(10):762–776. https://doi.org/10.1101/lm.1067808

Tapia-Rojas C, Cabezas-Opazo F, Ca D (2019) It’s all about tau. Prog Neurobiol. https://doi.org/10.1016/j.pneurobio.2018.12.005

Tomljenovic L (2011) Aluminum and Alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimers Dis. https://doi.org/10.3233/JAD-2010-101494

Wang H, Lu XT, Jia ZJ, Niu Q (2013) Effect of aluminum trichloride on abnormal phosphorylation of tau protein in SH-SY5Y cells. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 31(2):100–103

Wiatrak B, Kubis-Kubiak A, Piwowar A, Barg E (2020) PC12 cell line: cell types, coating of culture vessels, differentiation and other culture conditions. Cells. https://doi.org/10.3390/cells9040958

Wong M (2013) Mammalian target of rapamycin (mTOR) pathways in neurological diseases. Biomed J 36(2):40–50. https://doi.org/10.4103/2319-4170.110365

Xu Y, Zhang H, Pan B, Zhang S, Wang S, Niu Q (2018) Transcriptome-wide identification of differentially expressed genes and long non-coding RNAs in aluminum-treated rat hippocampus. Neurotox Res 34(2):220–232. https://doi.org/10.1007/s12640-018-9879-1