Co-expression and Interaction of Pax6 with Genes and Proteins of Immunological Surveillance in the Brain of Mice

Neurotoxicity Research - Tập 40 - Trang 2238-2252 - 2022
Shashank Kumar Maurya1,2, Rajnikant Mishra1
1Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
2Department of Zoology, University of Delhi, Delhi, India

Tóm tắt

The Pax6 binds to promoter sequence elements of genes involved in immunological surveillance and interacts with Iba1, p53, Ras-GAP, and Sparc in the brain of mice. The Pax6 also affects the expression pattern of genes involved in neurogenesis and neurodegeneration. However, the expression and association of Pax6 in the brain under immunologically challenged conditions are still elusive. Therefore, it has been intended to analyze the association of Pax6 in the immunity of the brain using the immune-challenged Dalton’s lymphoma (DL) mice model. The expressions of Pax6, Iba1, and Tmem119 decreased, but expressions of Ifn-γ, Tnf-α, Bdnf, and Tgf-β increased in the brain of immune-challenged mice as compared to the control. The level of co-expression of Pax6 decreased in dual positive cells with Iba1, Tmem119, Sparc, p53, Bdnf, and Tgf-β in the brain of immune-challenged mice. Binding of Pax6 to multiple sites of the promoter sequences of Bdnf and Tgf-β indicates their Pax6-associated differential expression and association with immune responsive gene. The levels of binding of Pax6 to Tmem119, Iba1, Ifn-γ, and Tnf-α got altered during the immune-challenged state as compared to control. Results provide the first evidence of the association of Pax6 in brain-specific immunity.

Tài liệu tham khảo

Ashery-Padan R, Zhou X, Marquardt T, Herrera P, Toube L, Berry A, Gruss P (2004) Conditional inactivation of Pax6 in the pancreas causes early onset of diabetes. Dev Biol 269(2):479–488. https://doi.org/10.1016/j.ydbio.2004.01.040 Bathina S, Das UN (2015) Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 11:1164–1178. https://doi.org/10.5114/aoms.2015.56342 Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, Mulinyawe SB, Bohlen CJ, Adil A, Tucker A, Weissman IL, Chang EF, Li G, Grant GA, Hayden Gephart MG, Barres BA (2016) New tools for studying microglia in the mouse and human CNS. Proc Nat Acad Sci USA 113:E1738-1746. https://doi.org/10.1073/pnas.1525528113 Bharti B, Mishra R (2008) Lymphoma affects enzyme and protein profile of non-lymphatic tissues in mice. Int J Inte Biol 3:175–181 Bharti B, Mishra R (2011) Isoforms of Pax5 and co-regulation of T- and B-cells associated genes influence phenotypic traits of ascetic cells causing Dalton’s lymphoma. Biochim Biophys Acta- Mol Cell Res 1813:2071–2078. https://doi.org/10.1016/j.bbamcr.2011.08.003 Bharti B, Basu P, Mishra R, Singaravel M (2011) Effects of induced Dalton’s lymphoma on circadian locomotor activity rhythm of adult male mice. Biol Rhythm Res 43:215–223. https://doi.org/10.1080/09291016.2011.560054 Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R (2014) Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 8:430. https://doi.org/10.3389/fncel.2014.00430 Chen Z, Trapp BD (2016) Microglia and neuroprotection. J Neurochem 136:10–17. https://doi.org/10.1111/jnc.13062 Chen YT, Chen FY, Vijmasi T, Stephens DN, Gallup M, McNamara NA (2013) Pax6 downregulation mediates abnormal lineage commitment of the ocular surface epithelium in aqueous-deficient dry eye disease. PLoS ONE 8:e77286. https://doi.org/10.1371/journal.pone.0077286 Dobolyi A, Vincze C, Pal G, Lovas G (2012) The neuroprotective functions of transforming growth factor beta proteins. Int J Mol Sci 13:8219–8258. https://doi.org/10.3390/ijms13078219 Doyle KP, Cekanaviciute E, Mamer LE, Buckwalter MS (2010) TGFβ signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke. J Neuroinflammation 7:62. https://doi.org/10.1186/1742-2094-7-62 Duan D, Fu Y, Paxinos G, Watson C (2013) Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice. Brain Struct Funct 218(2):353–372. https://doi.org/10.1007/s00429-012-0397-2 Fa Z, Brooks DJ, Okello A, Edison P (2017) An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain 140:792–803. https://doi.org/10.1093/brain/aww349 Flood L, Korol SV, Ekselius L, Birnir B, Jin Z (2019) Interferon-γ potentiates GABAA receptor-mediated inhibitory currents in rat hippocampal CA1 pyramidal neurons. J Neuroimmunol 337:577050. https://doi.org/10.1016/j.jneuroim.2019.577050 Glaser T, Jepeal L, Edwards JG, Young SR, Favor J, Maas RL (1994) PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat Genet 7:463–471. https://doi.org/10.1038/ng0894-463 Grant MK, Bobilev AM, Branch A, Lauderdale JD (2021) Structural and functional consequences of PAX6 mutations in the brain: implications for aniridia. Brain Res 1756:147283. https://doi.org/10.1016/j.brainres.2021.147283 Haba H, Nomura T, Suto F, Osumi N (2009) Subtype-specific reduction of olfactory bulb interneurons in Pax6 heterozygous mutant mice. Neurosci Res 65:116–121. https://doi.org/10.1016/j.neures.2009.05.011 Hack MA, Saghatelyan A, de Chevigny A, Pfeifer A, Ashery-Padan R, Lledo PM, Götz M (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8:865–872. https://doi.org/10.1038/nn1479 Hart AW, Mella S, Mendrychowski J, van Heyningen V, Kleinjan DA (2013) The developmental regulator Pax6 is essential for maintenance of islet cell function in the adult mouse pancreas. PLoS ONE 8(1):e54173. https://doi.org/10.1371/journal.pone.0054173 Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, Hack MA, Chapouton P, Barde YA, Götz M (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 5:308–315. https://doi.org/10.1038/nn828 Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, Khoury El (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16:1896–1905. https://doi.org/10.1038/nn.355 Holtman IR, Raj DD, Miller JA, Schaafsma W, Yin Z, Brouwer N, Wes PD, Möller T, Orre M, Kamphuis W, Hol EM, Boddeke EW, Eggen BJ (2015) Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathol Commun 3:31. https://doi.org/10.1186/s40478-015-0203-5 Kohwi M, Osumi N, Rubenstein JL, Alvarez-Buylla A (2005) Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci 25:6997–7003. https://doi.org/10.1523/JNEUROSCI.1435-05.2005 Korthagen NM, van Bilsen K, Swagemakers SM, van de Peppel J, Bastiaans J, van der Spek PJ, van Hagen PM, Dik WA (2015) Retinal pigment epithelial cells display specific transcriptional responses upon TNF-α stimulation. Br J Ophthalmol 99(5):700–704. https://doi.org/10.1136/bjophthalmol-2014-306309 Korzhevskii DE, Kirik OV (2016) Brain microglia and microglial markers. Neurosci Behav Physi 46:284–290. https://doi.org/10.1007/s11055-016-0231-z Kowianski P, Lietzau G, Czuba E, Waskow M, Steliga A, Morys J (2018) BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 38:579–593. https://doi.org/10.1007/s10571-017-0510-4 Kroll TT, O’Leary DD (2005) Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate. Proc Nat Acad Sci USA 102:7374–7379. https://doi.org/10.1073/pnas.0500819102 Li Y, Shen XZ, Li L, Zhao TV, Bernstein KE, Johnson AK, Lyden P, Fang J, Shi P (2017) Brain transforming growth factor-β resists hypertension via regulating microglial activation. Stroke 48:2557–2564. https://doi.org/10.1161/STROKEAHA.117.017370 Liu H, Sun Y, Zhang Q, Jin W, Gordon RE, Zhang Y, Wang J, Sun C, Wang ZJ, Qi X, Zhang J, Huang B, Gui Q, Yuan H, Chen L, Ma X, Fang C, Liu YQ, Yu X, Feng S (2021) Pro-inflammatory and proliferative microglia drive progression of glioblastoma. Cell Rep 36:109718. https://doi.org/10.1016/j.celrep.2021.109718 Lloyd-Burton SM, York EM, Anwar MA, Vincent AJ, Roskams AJ (2013) SPARC regulates microgliosis and functional recovery following cortical ischemia. J Neurosci 33:4468–4481. https://doi.org/10.1523/JNEUROSCI.3585-12.2013 London A, Cohen M, Schwartz M (2013) Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci 7:34. https://doi.org/10.3389/fncel.2013.00034 Maekawa M, Takashima N, Arai Y, Nomura T, Inokuchi K, Yuasa S, Osumi N (2005) Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes Cells 10:1001–1014. https://doi.org/10.1111/j.1365-2443.2005.00893.x Manuel MN, Mi D, Mason JO, Price DJ (2015) Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front Cell Neurosci 9:70. https://doi.org/10.3389/fncel.2015.00070 Maurya SK, Mishra R (2017a) Pax6 interacts with Iba1 and shows age-associated alterations in brain of aging mice. J Chem Neuroanat 82:60–64. https://doi.org/10.1016/j.jchemneu.2017.05.002 Maurya SK, Mishra R (2017b) Pax6 binds to promoter sequence elements associated with immunological surveillance and energy homeostasis in brain of aging mice. Ann Neurosci 24:20–25. https://doi.org/10.1159/000464419 Mishra S, Maurya SK, Srivastava K, Shukla S, Mishra R (2015) Pax6 influences expression patterns of genes involved in neuro-degeneration. Ann Neurosci 22:226–231. https://doi.org/10.5214/ans.0972.7531.220407 Nikoletopoulou V, Plachta N, Allen ND, Pinto L, Götz M, Barde YA (2007) Neurotrophin receptor-mediated death of misspecified neurons generated from embryonic stem cells lacking Pax6. Cell Stem Cell 1:529–540. https://doi.org/10.1016/j.stem.2007.08.011 Norden DM, Godbout JP (2013) Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol 39:19–34. https://doi.org/10.1111/j.1365-2990.2012.01306.x Olmos G, Lladó J (2014) Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm 2014:861231. https://doi.org/10.1155/2014/861231 Paolicelli RC, Ferretti MT (2017) Function and dysfunction of microglia during brain development: consequences for synapses and neural circuits. Front Synaptic Neurosci 9:9. https://doi.org/10.3389/fnsyn.2017.00009 Parrish-Aungst S, Shipley MT, Erdelyi F, Szabo G, Puche AC (2007) Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J Comp Neurol 501:825–836. https://doi.org/10.1002/cne.21205 Piepmeier AT, Etnier JL (2015) Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. J Sport and Health Sci 4:14–23. https://doi.org/10.1016/j.jshs.2014.11.001 Sanchez-Mejias E, Navarro V, Jimenez S, Sanchez-Mico M, Sanchez-Varo R, Nuñez-Diaz C, Trujillo-Estrada L, Davila JC, Vizuete M, Gutierrez A, Vitorica J (2016) Soluble phospho-tau from Alzheimer’s disease hippocampus drives microglial degeneration. Acta Neuropathol 132:897–916. https://doi.org/10.1007/s00401-016-1630-5 Satoh J, Kino Y, Asahina N, Takitani M, Miyoshi J, Ishida T, Saito Y (2016) TMEM119 marks a subset of microglia in the human brain. Neuropathol 3:39–49. https://doi.org/10.1111/neup.12235 Shanker A, Singh SM, Sodhi A (2000) Impairment of T-cell functions with the progressive ascitic growth of a transplantable T-cell lymphoma of spontaneous origin. FEMS Immunol Med Microbiol 27:247–255. https://doi.org/10.1111/j.1574-695X.2000.tb01437.x Shukla S, Mishra R (2018) Level of hydrogen peroxide affects expression and sub-cellular localization of Pax6. Mol Biol Rep 45:533–540. https://doi.org/10.1007/s11033-018-4190-z Silverman HA, Dancho M, Regnier-Golanov A, Nasim M, Ochani M, Olofsson PS, Ahmed M, Miller EJ, Chavan SS, Golanov E, Metz CN, Tracey KJ, Pavlov VA (2015) Brain region-specific alterations in the gene expression of cytokines, immune cell markers and cholinergic system components during peripheral endotoxin-induced inflammation. Mol Med 20:601–611. https://doi.org/10.2119/molmed.2014.00147 Singhal G, Baune BT (2017) Microglia: an interface between the loss of neuroplasticity and depression. Front Cell Neurosci 11:270. https://doi.org/10.3389/fncel.2017.00270 Sousa C, Golebiewska A, Poovathingal SK, Kaoma T, Pires-Afonso Y, Martina S, Coowar D, Azuaje F, Skupin A, Balling R, Biber K, Niclou SP, Michelucci A (2018) Single-cell transcriptomics reveals distinct inflammation-induced microglia signatures. EMBO Rep 19:e46171. https://doi.org/10.15252/embr.201846171 Thakurela S, Tiwari N, Schick S, Garding A, Ivanek R, Berninger B, Tiwari VK (2016) Mapping gene regulatory circuitry of Pax6 during neurogenesis. Cell Discov 2:15045. https://doi.org/10.1038/celldisc.2015.45 Tripathi R, Mishra R (2010) Interaction of Pax6 with SPARC and p53 in brain of mice indicates Smad3 dependent auto-regulation. J Mol Neurosci 41:397–403. https://doi.org/10.1007/s12031-010-9334-0 Tripathi R, Mishra R (2012) Aging-associated modulation in the expression of Pax6 in mouse brain. Cell Mol Neurobiol 32:209–218. https://doi.org/10.1007/s10571-011-9749-3 Tsukada T, Sakata-Haga H, Shimada H, Shoji H, Hatta T (2021) Mid-pregnancy maternal immune activation increases Pax6-positive and Tbr2-positive neural progenitor cells and causes integrated stress response in the fetal brain in a mouse model of maternal viral infection. IBRO Neurosci Rep 11:73–80. https://doi.org/10.1016/j.ibneur.2021.07.003 Tsunoda T, Takagi T (1999) Estimating transcription factor bind ability on DNA. Bioinformatics 15:622–630. https://doi.org/10.1093/bioinformatics/15.7.622 Tuoc TC, Radyushkin K, Tonchev AB, Piñon MC, Ashery-Padan R, Molnár Z, Davidoff MS, Stoykova A (2009) Selective cortical layering abnormalities and behavioral deficits in cortex-specific Pax6 knock-out mice. J Neurosci 29:8335–8349. https://doi.org/10.1523/JNEUROSCI.5669-08.2009 Uslupehlivan M, Şener E, Deveci R (2018) In silico analysis of Pax6 protein glycosylation in vertebrates. Comput Biol Chem 77:116–122. https://doi.org/10.1016/j.compbiolchem.2018.09.016 van Wageningen TA, Vlaar E, Kooij G, Jongenelen C, Geurts J, van Dam AM (2019) Regulation of microglial TMEM119 and P2RY12 immunoreactivity in multiple sclerosis white and grey matter lesions is dependent on their inflammatory environment. Acta Neuropathol Commun 7:206. https://doi.org/10.1186/s40478-019-0850-z Vivien D, Ali C (2006) Transforming growth factor-beta signalling in brain disorders. Cytokine Growth Factor Rev 17:121–128. https://doi.org/10.1016/j.cytogfr.2005.09.011 Wolf LV, Yang Y, Wang J, Xie Q, Braunger B, Tamm ER, Zavadil J, Cvekl A (2009) Identification of pax6-dependent gene regulatory networks in the mouse lens. PLoS ONE 4:e4159. https://doi.org/10.1371/journal.pone.0004159 Wu SY, Pan BS, Tsai SF, Chiang YT, Huang BM, Mo FE, Kuo YM (2020) BDNF reverses aging-related microglial activation. J Neuroinflammation 17:210. https://doi.org/10.1186/s12974-020-01887-1 Xu J, Wang Y, Jiang H, Sun M, Gao J, Xie A (2019) TGF-β in mice ameliorates experimental autoimmune encephalomyelitis in regulating NK cell activity. Cell Transplant 28:1155–1160. https://doi.org/10.1177/0963689719852354 Yasuda T, Kajimoto Y, Fujitani Y, Watada H, Yamamoto S, Watarai T, Umayahara Y, Matsuhisa M, Gorogawa S, Kuwayama Y, Tano Y, Yamasaki Y, Hori M (2002) PAX6 mutation as a genetic factor common to aniridia and glucose intolerance. Diabetes 51:224–230. https://doi.org/10.2337/diabetes.51.1.224 Zhang SJ, Li YF, Tan RR, Tsoi B, Huang WS, Huang YH, Tang XL, Hu D, Yao N, Yang X, Kurihara H, Wang Q, He RR (2016) A new gestational diabetes mellitus model: hyperglycemia-induced eye malformation via inhibition of Pax6 in the chick embryo. Dis Model Mech 9:177–186. https://doi.org/10.1242/dmm.022012 Zöller T, Schneider A, Kleimeyer C, Masuda T, Potru PS, Pfeifer D, Blank T, Prinz M, Spittau B (2018) Silencing of TGFβ signalling in microglia results in impaired homeostasis. Nat Commun 9:4011. https://doi.org/10.1038/s41467-018-06224-y