Journal of the Royal Statistical Society. Series B: Statistical Methodology
Công bố khoa học tiêu biểu
Sắp xếp:
Inference of Trends in Time Series Summary We consider statistical inference of trends in mean non-stationary models. A test statistic is proposed for the existence of structural breaks in trends. On the basis of a strong invariance principle of stationary processes, we construct simultaneous confidence bands with asymptotically correct nominal coverage probabilities. The results are applied to global warming temperature data and Nile river flow data. Our confidence band of the trend of the global warming temperature series supports the claim that the trend is increasing over the last 150 years.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 69 Số 3 - Trang 391-410 - 2007
Nonparametric Maximum Likelihood Estimation for Shifted Curves Summary
The analysis of a sample of curves can be done by self-modelling regression methods. Within this framework we follow the ideas of nonparametric maximum likelihood estimation known from event history analysis and the counting process set-up. We derive an infinite dimensional score equation and from there we suggest an algorithm to estimate the shape function for a simple shape invariant model. The nonparametric maximum likelihood estimator that we find turns out to be a Nadaraya–Watson-like estimator, but unlike in the usual kernel smoothing situation we do not need to select a bandwidth or even a kernel function, since the score equation automatically selects the shape and the smoothing parameter for the estimation. We apply the method to a sample of electrophoretic spectra to illustrate how it works.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 63 Số 2 - Trang 243-259 - 2001
Self-Modelling Warping Functions Summary The paper introduces a semiparametric model for functional data. The warping functions are assumed to be linear combinations of q common components, which are estimated from the data (hence the name ‘self-modelling’). Even small values of q provide remarkable model flexibility, comparable with nonparametric methods. At the same time, this approach avoids overfitting because the common components are estimated combining data across individuals. As a convenient by-product, component scores are often interpretable and can be used for statistical inference (an example of classification based on scores is given).
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 66 Số 4 - Trang 959-971 - 2004
Thin Plate Regression Splines Summary I discuss the production of low rank smoothers for d ≥ 1 dimensional data, which can be fitted by regression or penalized regression methods. The smoothers are constructed by a simple transformation and truncation of the basis that arises from the solution of the thin plate spline smoothing problem and are optimal in the sense that the truncation is designed to result in the minimum possible perturbation of the thin plate spline smoothing problem given the dimension of the basis used to construct the smoother. By making use of Lanczos iteration the basis change and truncation are computationally efficient. The smoothers allow the use of approximate thin plate spline models with large data sets, avoid the problems that are associated with ‘knot placement’ that usually complicate modelling with regression splines or penalized regression splines, provide a sensible way of modelling interaction terms in generalized additive models, provide low rank approximations to generalized smoothing spline models, appropriate for use with large data sets, provide a means for incorporating smooth functions of more than one variable into non-linear models and improve the computational efficiency of penalized likelihood models incorporating thin plate splines. Given that the approach produces spline-like models with a sparse basis, it also provides a natural way of incorporating unpenalized spline-like terms in linear and generalized linear models, and these can be treated just like any other model terms from the point of view of model selection, inference and diagnostics.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 65 Số 1 - Trang 95-114 - 2003
Bayesian Inference for Semiparametric Regression Using a Fourier Representation Summary
This paper presents the Bayesian analysis of a semiparametric regression model that consists of parametric and nonparametric components. The nonparametric component is represented with a Fourier series where the Fourier coefficients are assumed a priori to have zero means and to decay to 0 in probability at either algebraic or geometric rates. The rate of decay controls the smoothness of the response function. The posterior analysis automatically selects the amount of smoothing that is coherent with the model and data. Posterior probabilities of the parametric and semiparametric models provide a method for testing the parametric model against a non-specific alternative. The Bayes estimator’s mean integrated squared error compares favourably with the theoretically optimal estimator for kernel regression.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 61 Số 4 - Trang 863-879 - 1999
Contingency Table Interactions
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 2 Số 2 - Trang 248-252 - 1935
Making Sense of Sensitivity: Extending Omitted Variable Bias Summary We extend the omitted variable bias framework with a suite of tools for sensitivity analysis in regression models that does not require assumptions on the functional form of the treatment assignment mechanism nor on the distribution of the unobserved confounders, naturally handles multiple confounders, possibly acting non-linearly, exploits expert knowledge to bound sensitivity parameters and can be easily computed by using only standard regression results. In particular, we introduce two novel sensitivity measures suited for routine reporting. The robustness value describes the minimum strength of association that unobserved confounding would need to have, both with the treatment and with the outcome, to change the research conclusions. The partial R2 of the treatment with the outcome shows how strongly confounders explaining all the residual outcome variation would have to be associated with the treatment to eliminate the estimated effect. Next, we offer graphical tools for elaborating on problematic confounders, examining the sensitivity of point estimates and t-values, as well as ‘extreme scenarios’. Finally, we describe problems with a common ‘benchmarking’ practice and introduce a novel procedure to bound the strength of confounders formally on the basis of a comparison with observed covariates. We apply these methods to a running example that estimates the effect of exposure to violence on attitudes toward peace.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 82 Số 1 - Trang 39-67 - 2020
Globally Efficient Non-Parametric Inference of Average Treatment Effects by Empirical Balancing Calibration Weighting Summary The estimation of average treatment effects based on observational data is extremely important in practice and has been studied by generations of statisticians under different frameworks. Existing globally efficient estimators require non-parametric estimation of a propensity score function, an outcome regression function or both, but their performance can be poor in practical sample sizes. Without explicitly estimating either function, we consider a wide class of calibration weights constructed to attain an exact three-way balance of the moments of observed covariates among the treated, the control and the combined group. The wide class includes exponential tilting, empirical likelihood and generalized regression as important special cases, and extends survey calibration estimators to different statistical problems and with important distinctions. Global semiparametric efficiency for the estimation of average treatment effects is established for this general class of calibration estimators. The results show that efficiency can be achieved by solely balancing the covariate distributions without resorting to direct estimation of the propensity score or outcome regression function. We also propose a consistent estimator for the efficient asymptotic variance, which does not involve additional functional estimation of either the propensity score or the outcome regression functions. The variance estimator proposed outperforms existing estimators that require a direct approximation of the efficient influence function.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 78 Số 3 - Trang 673-700 - 2016
Covariate Balancing Propensity Score Summary The propensity score plays a central role in a variety of causal inference settings. In particular, matching and weighting methods based on the estimated propensity score have become increasingly common in the analysis of observational data. Despite their popularity and theoretical appeal, the main practical difficulty of these methods is that the propensity score must be estimated. Researchers have found that slight misspecification of the propensity score model can result in substantial bias of estimated treatment effects. We introduce covariate balancing propensity score (CBPS) methodology, which models treatment assignment while optimizing the covariate balance. The CBPS exploits the dual characteristics of the propensity score as a covariate balancing score and the conditional probability of treatment assignment. The estimation of the CBPS is done within the generalized method-of-moments or empirical likelihood framework. We find that the CBPS dramatically improves the poor empirical performance of propensity score matching and weighting methods reported in the literature. We also show that the CBPS can be extended to other important settings, including the estimation of the generalized propensity score for non-binary treatments and the generalization of experimental estimates to a target population. Open source software is available for implementing the methods proposed.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 76 Số 1 - Trang 243-263 - 2014
Non-parametric Methods for Doubly Robust Estimation of Continuous Treatment Effects Summary Continuous treatments (e.g. doses) arise often in practice, but many available causal effect estimators are limited by either requiring parametric models for the effect curve, or by not allowing doubly robust covariate adjustment. We develop a novel kernel smoothing approach that requires only mild smoothness assumptions on the effect curve and still allows for misspecification of either the treatment density or outcome regression. We derive asymptotic properties and give a procedure for data-driven bandwidth selection. The methods are illustrated via simulation and in a study of the effect of nurse staffing on hospital readmissions penalties.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 79 Số 4 - Trang 1229-1245 - 2017
Tổng số: 45
- 1
- 2
- 3
- 4
- 5