Journal of the Royal Statistical Society. Series B: Statistical Methodology
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Các Biện Pháp Bayesian Cho Độ Phức Tạp và Độ Khớp Của Mô Hình Tóm tắt Chúng tôi xem xét vấn đề so sánh các mô hình phân cấp phức tạp trong đó số lượng tham số không được xác định rõ. Sử dụng lập luận thông tin lý thuyết, chúng tôi đưa ra một thước đo pD cho số lượng tham số hiệu quả trong một mô hình như sự khác biệt giữa trung bình hậu nghiệm của độ lệch và độ lệch tại giá trị trung bình hậu nghiệm của các tham số quan trọng. Nói chung pD tương quan xấp xỉ với vết của tích giữa thông tin Fisher và hiệp phương sai hậu nghiệm, trong các mô hình chuẩn là vết của ma trận ‘hat’ chiếu các quan sát lên giá trị được khớp. Các tính chất của nó trong các họ số mũ được khảo sát. Trung bình hậu nghiệm của độ lệch được đề xuất như một biện pháp đo lường Bayesian về sự phù hợp hoặc đủ, và sự đóng góp của các quan sát riêng lẻ đến sự phù hợp và độ phức tạp có thể dẫn đến một biểu đồ chuẩn đoán của phần dư độ lệch so với đòn bẩy. Việc thêm pD vào trung bình hậu nghiệm độ lệch tạo ra tiêu chuẩn thông tin độ lệch để so sánh các mô hình, liên quan đến các tiêu chuẩn thông tin khác và có một sự biện hộ xấp xỉ quyết định lý thuyết. Quy trình được minh họa trong một số ví dụ, và các so sánh được thực hiện với các đề xuất Bayesian và cổ điển khác. Suốt cả quá trình, nhấn mạnh rằng lượng cần thiết để tính toán trong phân tích Markov chain Monte Carlo là không đáng kể.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 64 Số 4 - Trang 583-639 - 2002
#Mô hình phân cấp phức tạp #thông tin lý thuyết #số lượng tham số hiệu quả #độ lệch hậu nghiệm #phương sai hậu nghiệm #ma trận 'hat' #các họ số mũ #biện pháp đo lường Bayesian #biểu đồ chuẩn đoán #Markov chain Monte Carlo #tiêu chuẩn thông tin độ lệch.
Kiểm Soát Tỷ Lệ Phát Hiện Sai: Một Cách Tiếp Cận Thực Tiễn và Mạnh Mẽ cho Kiểm Tra Đa Giả Thuyết TÓM TẮT Cách tiếp cận phổ biến với vấn đề đa chiều yêu cầu kiểm soát tỷ lệ lỗi gia đình (FWER). Tuy nhiên, phương pháp này có những thiếu sót và chúng tôi chỉ ra một số điểm. Một cách tiếp cận khác cho các vấn đề kiểm định ý nghĩa đa tiêu chuẩn được trình bày. Phương pháp này yêu cầu kiểm soát tỷ lệ phần trăm dự kiến của các giả thuyết bị bác bỏ sai — tỷ lệ phát hiện sai. Tỷ lệ lỗi này tương đương với FWER khi tất cả các giả thuyết đều đúng nhưng nhỏ hơn trong các trường hợp khác. Do đó, trong các vấn đề mà việc kiểm soát tỷ lệ phát hiện sai chứ không phải FWER là mong muốn, có khả năng cải thiện sức mạnh kiểm định. Một quy trình Bonferroni kiểu tuần tự đơn giản được chứng minh là kiểm soát tỷ lệ phát hiện sai cho các thống kê kiểm tra độc lập, và một nghiên cứu mô phỏng cho thấy sự cải thiện sức mạnh là đáng kể. Sử dụng quy trình mới và tính thích hợp của tiêu chí này được minh họa qua các ví dụ.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 57 Số 1 - Trang 289-300 - 1995
#Tỷ lệ lỗi gia đình #Tỷ lệ phát hiện sai #Kiểm tra đa giả thuyết #Quy trình Bonferroni #Sức mạnh kiểm định
Hypothesis Testing for Automated Community Detection in Networks Summary
Community detection in networks is a key exploratory tool with applications in a diverse set of areas, ranging from finding communities in social and biological networks to identifying link farms in the World Wide Web. The problem of finding communities or clusters in a network has received much attention from statistics, physics and computer science. However, most clustering algorithms assume knowledge of the number of clusters k. We propose to determine k automatically in a graph generated from a stochastic block model by using a hypothesis test of independent interest. Our main contribution is twofold; first, we theoretically establish the limiting distribution of the principal eigenvalue of the suitably centred and scaled adjacency matrix and use that distribution for our test of the hypothesis that a random graph is of Erdős–Rényi (noise) type. Secondly, we use this test to design a recursive bipartitioning algorithm, which naturally uncovers nested community structure. Using simulations and quantifiable classification tasks on real world networks with ground truth, we show that our algorithm outperforms state of the art methods.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 78 Số 1 - Trang 253-273 - 2016
Towards a Coherent Statistical Framework for Dense Deformable Template Estimation Summary The problem of estimating probabilistic deformable template models in the field of computer vision or of probabilistic atlases in the field of computational anatomy has not yet received a coherent statistical formulation and remains a challenge. We provide a careful definition and analysis of a well-defined statistical model based on dense deformable templates for grey level images of deformable objects. We propose a rigorous Bayesian framework for which we prove asymptotic consistency of the maximum a posteriori estimate and which leads to an effective iterative estimation algorithm of the geometric and photometric parameters in the small sample setting. The model is extended to mixtures of finite numbers of such components leading to a fine description of the photometric and geometric variations of an object class. We illustrate some of the ideas with images of handwritten digits and apply the estimated models to classification through maximum likelihood.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 69 Số 1 - Trang 3-29 - 2007
Bayesian Inference for Semiparametric Regression Using a Fourier Representation Summary
This paper presents the Bayesian analysis of a semiparametric regression model that consists of parametric and nonparametric components. The nonparametric component is represented with a Fourier series where the Fourier coefficients are assumed a priori to have zero means and to decay to 0 in probability at either algebraic or geometric rates. The rate of decay controls the smoothness of the response function. The posterior analysis automatically selects the amount of smoothing that is coherent with the model and data. Posterior probabilities of the parametric and semiparametric models provide a method for testing the parametric model against a non-specific alternative. The Bayes estimator’s mean integrated squared error compares favourably with the theoretically optimal estimator for kernel regression.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 61 Số 4 - Trang 863-879 - 1999
Designing Experiments with Respect to ‘Standardized’ Optimality Criteria Summary
We introduce a new class of ‘standardized' optimality criteria which depend on ‘standardized' covariances of the least squares estimators and provide an alternative to the commonly used criteria in design theory. Besides a nice statistical interpretation the new criteria satisfy an extremely useful invariance property which allows an easy calculation of optimal designs on many linearly transformed design spaces.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 59 Số 1 - Trang 97-110 - 1997
Inference of Trends in Time Series Summary We consider statistical inference of trends in mean non-stationary models. A test statistic is proposed for the existence of structural breaks in trends. On the basis of a strong invariance principle of stationary processes, we construct simultaneous confidence bands with asymptotically correct nominal coverage probabilities. The results are applied to global warming temperature data and Nile river flow data. Our confidence band of the trend of the global warming temperature series supports the claim that the trend is increasing over the last 150 years.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 69 Số 3 - Trang 391-410 - 2007
Nonparametric Maximum Likelihood Estimation for Shifted Curves Summary
The analysis of a sample of curves can be done by self-modelling regression methods. Within this framework we follow the ideas of nonparametric maximum likelihood estimation known from event history analysis and the counting process set-up. We derive an infinite dimensional score equation and from there we suggest an algorithm to estimate the shape function for a simple shape invariant model. The nonparametric maximum likelihood estimator that we find turns out to be a Nadaraya–Watson-like estimator, but unlike in the usual kernel smoothing situation we do not need to select a bandwidth or even a kernel function, since the score equation automatically selects the shape and the smoothing parameter for the estimation. We apply the method to a sample of electrophoretic spectra to illustrate how it works.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 63 Số 2 - Trang 243-259 - 2001
Self-Modelling Warping Functions Summary The paper introduces a semiparametric model for functional data. The warping functions are assumed to be linear combinations of q common components, which are estimated from the data (hence the name ‘self-modelling’). Even small values of q provide remarkable model flexibility, comparable with nonparametric methods. At the same time, this approach avoids overfitting because the common components are estimated combining data across individuals. As a convenient by-product, component scores are often interpretable and can be used for statistical inference (an example of classification based on scores is given).
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 66 Số 4 - Trang 959-971 - 2004
Thin Plate Regression Splines Summary I discuss the production of low rank smoothers for d ≥ 1 dimensional data, which can be fitted by regression or penalized regression methods. The smoothers are constructed by a simple transformation and truncation of the basis that arises from the solution of the thin plate spline smoothing problem and are optimal in the sense that the truncation is designed to result in the minimum possible perturbation of the thin plate spline smoothing problem given the dimension of the basis used to construct the smoother. By making use of Lanczos iteration the basis change and truncation are computationally efficient. The smoothers allow the use of approximate thin plate spline models with large data sets, avoid the problems that are associated with ‘knot placement’ that usually complicate modelling with regression splines or penalized regression splines, provide a sensible way of modelling interaction terms in generalized additive models, provide low rank approximations to generalized smoothing spline models, appropriate for use with large data sets, provide a means for incorporating smooth functions of more than one variable into non-linear models and improve the computational efficiency of penalized likelihood models incorporating thin plate splines. Given that the approach produces spline-like models with a sparse basis, it also provides a natural way of incorporating unpenalized spline-like terms in linear and generalized linear models, and these can be treated just like any other model terms from the point of view of model selection, inference and diagnostics.
Journal of the Royal Statistical Society. Series B: Statistical Methodology - Tập 65 Số 1 - Trang 95-114 - 2003
Tổng số: 48
- 1
- 2
- 3
- 4
- 5