Sparse Partial Least Squares Regression for Simultaneous Dimension Reduction and Variable Selection
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abramovich, 2006, Adapting to unknown sparsity by controlling the false discovery rate, Ann. Statist., 34, 584, 10.1214/009053606000000074
D’Aspremont, 2007, A direct formulation for sparse pca using semidefinite programming, SIAM Rev., 49, 434, 10.1137/050645506
Bair, 2006, Prediction by supervised principal components, J. Am. Statist. Ass., 101, 119, 10.1198/016214505000000628
Bendel, 1976, A criterion for stepwise regression, Am. Statistn, 30, 85, 10.1080/00031305.1976.10479146
Benjamini, 1995, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Statist. Soc. B, 57, 289
Boulesteix, 2005, Predicting transcription factor activities from combined analysis of microarray and chip data: a partial least squares approach, Theor. Biol. Med. Modllng, 2
Boulesteix, 2006, Partial least squares: a versatile tool for the analysis of high-dimensional genomic data, Brief. Bioinform., 7, 32, 10.1093/bib/bbl016
Ter Braak, 1998, The objective function of partial least squares regression, J. Chemometr., 12, 41, 10.1002/(SICI)1099-128X(199801/02)12:1<41::AID-CEM500>3.0.CO;2-F
Butler, 2000, The peculiar shrinkage properties of partial least squares regression, J. R. Statist. Soc B, 62, 585, 10.1111/1467-9868.00252
Chun, 2009, Expression quantitative loci mapping with multivariate sparse partial least squares, Genetics, 182, 79, 10.1534/genetics.109.100362
Frank, 1993, A statistical view of some chemometrics regression tools, Technometrics, 35, 109, 10.1080/00401706.1993.10485033
Friedman, 2004, Gradient directed regularization for linear regression and classification
Geman, 1980, A limit theorem for the norm of random matrices, Ann. Probab., 8, 252, 10.1214/aop/1176994775
Golub, 1987, Matrix Computations
Goutis, 1996, Partial least squares algorithm yields shrinkage estimators, Ann. Statist., 24, 816, 10.1214/aos/1032894467
Hastie, 2000, Identifying distinct sets of genes with similar expression patterns via ‘‘gene shaving’’, Genome Biol., 1, 1, 10.1186/gb-2000-1-2-research0003
Helland, 1990, Partial least squares regression and statistical models, Scand. J. Statist., 17, 97
Helland, 2000, Model reduction for prediction in regression models, Scand. J. Statist., 27, 1, 10.1111/1467-9469.00174
Helland, 1994, Comparison of prediction methods when only a few components are relevant, J. Am. Statist. Ass., 89, 583, 10.1080/01621459.1994.10476783
Huang, 2004, Modeling the relationship between lvad support time and gene expression changes in the human heart by penalized partial least squares, Bioinformatics, 20, 888, 10.1093/bioinformatics/btg499
Johnstone, 2004, Sparse principal component analysis. Technical Report
Jolliffe, 2003, A modified principal component technique based on the lasso, J. Computnl Graph. Statist., 12, 531, 10.1198/1061860032148
De Jong, 1993, SIMPLS: an alternative approach to partial least squares regression, Chemometr. Intell. Lab. Syst., 18, 251, 10.1016/0169-7439(93)85002-X
Kosorok, 2007, Marginal asymptotics for the ‘‘large p, small n’’ paradigm: with applications to microarray data, Ann. Statist., 35, 1456, 10.1214/009053606000001433
Krämer, 2007, An overview on the shrinkage properties of partial least squares regression, Computnl Statist., 22, 249, 10.1007/s00180-007-0038-z
Lee, 2002, Transcriptional regulatory networks in saccharomyces cerevisiae, Science, 298, 799, 10.1126/science.1075090
Nadler, 2005, The prediction error in cls and pls: the importance of feature selection prior to multivariate calibration, J. Chemometr., 19, 107, 10.1002/cem.915
Naik, 2000, Partial least squares estimator for single-index models, J. R. Statist. Soc. B, 62, 763, 10.1111/1467-9868.00262
Pratt, 1960, On interchanging limits and integrals, Ann. Math. Statist., 31, 74, 10.1214/aoms/1177705988
Spellman, 1998, Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization, Molec. Biol. Cell, 9, 3273, 10.1091/mbc.9.12.3273
Stoica, 1998, Partial least squares: a first-order analysis, Scand. J. Statist., 25, 17, 10.1111/1467-9469.00085
Tibshirani, 1996, Regression shrinkage and selection via the lasso, J. R. Statist. Soc. B, 58, 267
Wang, 2007, Group scad regression analysis for microarray time course gene expression data, Bioinformatics, 23, 1486, 10.1093/bioinformatics/btm125
Wold, 1966, Estimation of Principal Components and Related Models by Iterative Least Squares
Zou, 2005, Regularization and variable selection via the elastic net, J. R. Statist. Soc. B, 67, 301, 10.1111/j.1467-9868.2005.00503.x