Sparse Additive Models
Tóm tắt
Từ khóa
Tài liệu tham khảo
Antoniadis, 2001, Regularized wavelet approximations (with discussion), J. Am. Statist. Ass., 96, 939, 10.1198/016214501753208942
Buja, 1989, Linear smoothers and additive models, Ann. Statist., 17, 453
Bunea, 2007, Sparsity oracle inequalities for the lasso, Electron. J. Statist., 1, 169, 10.1214/07-EJS008
Daubechies, 2004, An iterative thresholding algorithm for linear inverse problems, Communs Pure Appl. Math., 57, 1413, 10.1002/cpa.20042
Daubechies, 2007, Accelerated projected gradient method for linear inverse problems with sparsity constraints
Fan, 2005, Nonparametric inference for additive models, J. Am. Statist. Ass., 100, 890, 10.1198/016214504000001439
Fan, 2001, Variable selection via penalized likelihood, J. Am. Statist. Ass., 96, 1348, 10.1198/016214501753382273
Greenshtein, 2004, Persistency in high dimensional linear predictor-selection and the virtue of over-parametrization, Bernoulli, 10, 971, 10.3150/bj/1106314846
Hastie, 1999, Generalized Additive Models
Juditsky, 2000, Functional aggregation for nonparametric regression, Ann. Statist., 28, 681, 10.1214/aos/1015951994
Koltchinskii, 2008, Proc. 21st A. Conf. Learning Theory, 229
Lin, 2006, Component selection and smoothing in multivariate nonparametric regression, Ann. Statist., 34, 2272, 10.1214/009053606000000722
Meier, 2008, High-dimensional additive modelling
Meinshausen, 2006, High dimensional graphs and variable selection with the lasso, Ann. Statist., 34, 1436, 10.1214/009053606000000281
Meinshausen, 2006, Lasso-type recovery of sparse representations for high-dimensional data, 10.21236/ADA472998
Olshausen, 1996, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, 381, 607, 10.1038/381607a0
Ravikumar, 2008, Advances in Neural Information Processing Systems, 1201
Tibshirani, 1996, Regression shrinkage and selection via the lasso, J. R. Statist. Soc. B, 58, 267
Wainwright, 2006, Sharp thresholds for high-dimensional and noisy recovery of sparsity
Wainwright, 2007, Advances in Neural Information Processing Systems, 1465
Wasserman, 2007, Multi-stage variable selection: screen and clean
Yuan, 2007, Nonnegative garrote component selection in functional ANOVA models, Proc. Artif. Intell. Statist.
Yuan, 2006, Model selection and estimation in regression with grouped variables, J. R. Statist. Soc. B, 68, 49, 10.1111/j.1467-9868.2005.00532.x
Zhao, 2007, On model selection consistency of lasso, J. Mach. Learn. Res., 7, 2541