Journal of Systematics and Evolution

  1759-6831

  1674-4918

  Mỹ

Cơ quản chủ quản:  Wiley-Blackwell , WILEY

Lĩnh vực:
Plant ScienceEcology, Evolution, Behavior and Systematics

Các bài báo tiêu biểu

A worldwide phylogenetic classification of the Poaceae (Gramineae)
Tập 53 Số 2 - Trang 117-137 - 2015
Robert J. Soreng, Paul M. Peterson, Konstantin Romaschenko, Gerrit Davidse, Fernando O. Zuloaga, Emmet J. Judziewicz, Tarciso S. Filgueiras, Jerrold I. Davis, Osvaldo Morrone
AbstractBased on recent molecular and morphological studies we present a modern worldwide phylogenetic classification of the ± 12074 grasses and place the 771 grass genera into 12 subfamilies (Anomochlooideae, Aristidoideae, Arundinoideae, Bambusoideae, Chloridoideae, Danthonioideae, Micraioideae, Oryzoideae, Panicoideae, Pharoideae, Puelioideae, and Pooideae), 6 supertribes (Andropogonodae, Arundinarodae, Bambusodae, Panicodae, Poodae, Triticodae), 51 tribes (Ampelodesmeae, Andropogoneae, Anomochloeae, Aristideae, Arundinarieae, Arundineae, Arundinelleae, Atractocarpeae, Bambuseae, Brachyelytreae, Brachypodieae, Bromeae, Brylkinieae, Centotheceae, Centropodieae, Chasmanthieae, Cynodonteae, Cyperochloeae, Danthonieae, Diarrheneae, Ehrharteae, Eragrostideae, Eriachneae, Guaduellieae, Gynerieae, Hubbardieae, Isachneae, Littledaleeae, Lygeeae, Meliceae, Micraireae, Molinieae, Nardeae, Olyreae, Oryzeae, Paniceae, Paspaleae, Phaenospermateae, Phareae, Phyllorachideae, Poeae, Steyermarkochloeae, Stipeae, Streptochaeteae, Streptogyneae, Thysanolaeneae, Triraphideae, Tristachyideae, Triticeae, Zeugiteae, and Zoysieae), and 80 subtribes (Aeluropodinae, Agrostidinae, Airinae, Ammochloinae, Andropogoninae, Anthephorinae, Anthistiriinae, Anthoxanthinae, Arthraxoninae, Arthropogoninae, Arthrostylidiinae, Arundinariinae, Aveninae, Bambusinae, Boivinellinae, Boutelouinae, Brizinae, Buergersiochloinae, Calothecinae, Cenchrinae, Chionachninae, Chusqueinae, Coicinae, Coleanthinae, Cotteinae, Cteniinae, Cynosurinae, Dactylidinae, Dichantheliinae, Dimeriinae, Duthieinae, Eleusininae, Eragrostidinae, Farragininae, Germainiinae, Gouiniinae, Guaduinae, Gymnopogoninae, Hickeliinae, Hilariinae, Holcinae, Hordeinae, Ischaeminae, Loliinae, Melinidinae, Melocanninae, Miliinae, Monanthochloinae, Muhlenbergiinae, Neurachninae, Olyrinae, Orcuttiinae, Oryzinae, Otachyriinae, Panicinae, Pappophorinae, Parapholiinae, Parianinae, Paspalinae, Perotidinae, Phalaridinae, Poinae, Racemobambosinae, Rottboelliinae, Saccharinae, Scleropogoninae, Scolochloinae, Sesleriinae, Sorghinae, Sporobolinae, Torreyochloinae, Traginae, Trichoneurinae, Triodiinae, Tripogoninae, Tripsacinae, Triticinae, Unioliinae, Zizaniinae, and Zoysiinae). In addition, we include a radial tree illustrating the hierarchical relationships among the subtribes, tribes, and subfamilies. We use the subfamilial name, Oryzoideae, over Ehrhartoideae because the latter was initially published as a misplaced rank, and we circumscribe Molinieae to include 13 Arundinoideae genera. The subtribe Calothecinae is newly described and the tribe Littledaleeae is new at that rank.
Plant speciation across environmental gradients and the occurrence and nature of hybrid zones
Tập 55 Số 4 - Trang 238-258 - 2017
Richard J. Abbott
AbstractEnvironmental gradients are very common and many plant species respond to them through adaptive genetic change. This can be a first step along a continuum of change that leads ultimately to the origin of fully reproductively isolated forms, i.e., ‘biological species’. Before complete reproductive isolation is achieved, hybrid zones may form between divergent lineages either through primary intergradation or secondary contact. Here, I review the literature on plant hybrid zones between native species and highlight: mode of origin (primary intergradation versus secondary contact); distribution among plant families, genera and life form; type and genotypic composition related to strength and type of reproductive isolation between parental lineages; nature of prezygotic and postzygotic reproductive barriers; level and direction of gene flow; and the stability of hybrid zones in the face of climate change. The total number of plant hybrid zones detected in a literature search was surprisingly small (137). This was the case even for areas of the world with a long history of research into plant evolution, ecology and systematics. Reasons for this are discussed, including the possibility that plant hybrid zones are naturally rare in the wild. Only for a few hybrid zones have attempts been made to distinguish between formation by primary intergradation or secondary contact, and it is assumed that most hybrid zones originate through secondary contact. From the limited information available, it appears that plant hybrid zones may frequently move in response to climate change, but long‐term studies are required to confirm this.
Plastid genome sequencing, comparative genomics, and phylogenomics: Current status and prospects
Tập 48 Số 2 - Trang 77-93 - 2010
Lei Gao, Yingjuan Su, Ting Wang
Chloroplast phylogenomics resolves key relationships in ferns
Tập 53 Số 5 - Trang 448-457 - 2015
Jin‐Mei Lu, Ning Zhang, Xin‐Yu Du, Jun Wen, Li D
AbstractStudies on chloroplast genomes of ferns and lycophytes are relatively few in comparison with those on seed plants. Although a basic phylogenetic framework of extant ferns is available, relationships among a few key nodes remain unresolved or poorly supported. The primary objective of this study is to explore the phylogenetic utility of large chloroplast gene data in resolving difficult deep nodes in ferns. We sequenced the chloroplast genomes from Cyrtomium devexiscapulae (Koidz.) Ching (eupolypod I) and Woodwardia unigemmata (Makino) Nakai (eupolypod II), and constructed the phylogeny of ferns based on both 48 genes and 64 genes. The trees based on 48 genes and 64 genes are identical in topology, differing only in support values for four nodes, three of which showed higher support values for the 48‐gene dataset. Equisetum L. was resolved as the sister to the Psilotales–Ophioglossales clade, and Equisetales–Psilotales–Ophioglossales clade was sister to the clade of the leptosporangiate and marattioid ferns. The sister relationship between the tree fern clade and polypods was supported by 82% and 100% bootstrap values in the 64‐gene and 48‐gene trees, respectively. Within polypod ferns, Pteridaceae was sister to the clade of Dennstaedtiaceae and eupolypods with a high support value, and the relationship of Dennstaedtiaceae–eupolypods was strongly supported. With recent parallel advances in the phylogenetics of ferns using nuclear data, chloroplast phylogenomics shows great potential in providing a framework for testing the impact of reticulate evolution in the early evolution of ferns.
Phylotranscriptomics reveals extensive gene duplication in the subtribe Gentianinae (Gentianaceae)
Tập 59 Số 6 - Trang 1198-1208 - 2021
Chunlin Chen, Lei Zhang, Jialiang Li, Xingxing Mao, Lushui Zhang, Quanjun Hu, Jianquan Liu, Zhenxiang Xi
AbstractGene duplication plays an important role in plants for diversification and adaptation to new habitats. In this study, we aim to reconstruct the genome‐scale phylogeny and identify large‐scale gene duplication events for the subtribe Gentianinae (Gentianaceae), which is a great symbol of the alpine plants in the Qinghai–Tibet Plateau. We sequenced and assembled 70 transcriptomes from 67 species, representing all six recognized genera in the subtribe Gentianinae plus the closely related outgroups. Using phylogenomic approaches, the backbone relationships of Gentianinae were almost fully resolved with high bootstrap support. Although instances of conflicts were observed between nuclear and plastid phylogenies, six major clades of Gentianinae were consistently recovered in both phylogenies. In addition, we revealed a high occurrence of duplicated genes in our transcriptome assemblies. Using several gene tree reconciliation methods, we collectively identified 10 nodes in the species tree with large concentrations of duplicated genes. Further analysis indicated that many of these duplicated genes likely arose from hybrid polyploidy, which might also account for some of the topological incongruences between nuclear and plastid phylogenies in Gentianinae.
Phylogenomic and comparative analyses of <i>Rheum</i> (Polygonaceae, Polygonoideae)
Tập 60 Số 6 - Trang 1229-1240 - 2022
Huajie Zhang, Xu Zhang, Jacob B. Landis, Yanxia Sun, Jiao Sun, Tianhui Kuang, Lijuan Li, Bashir B. Tiamiyu, Tao Deng, Hang Sun, Hengchang Wang
AbstractSpecies of Rheum have high medicinal value, with the center of diversity in the Qinghai–Tibet Plateau (QTP) and adjacent regions. However, phylogenetic relationships of Rheum are still unclear due to fragment markers providing insufficient informative loci. Here, we sequenced and annotated plastomes of nine Rheum species, and compared the genome structure among the novel nine species along with three published species. Comparative analyses revealed that plastomes of Rheum share a relatively conserved structure. Five highly divergent regions (accD, ccsA, matK, ndhF, and ndhH) can be used as valuable molecular markers for further species delimitation and population genetic studies. Twenty‐two accessions representing 17 species were used for phylogenetic analysis, which generated a robust phylogenetic tree and revealed two major clades within Rheum. Phylogenetic results showed that glasshouse structures and cushions of Rheum are results of parallel evolution during adaptation to similar environments. Inconsistent tree topology between concatenated and coalescent methods was detected, implying that incomplete lineage sorting and hybridization may have occurred in the evolutionary history of Rheum. Divergence time estimation based on two fossil calibrations and three secondary calibrations revealed a Miocene to middle Oligocene origin of Rheum. Our study provides valuable genomic resources for the medicinally important genus Rheum, while gaining helpful insights into its systematics and evolution.