Phylogenomic and comparative analyses of <i>Rheum</i> (Polygonaceae, Polygonoideae)

Journal of Systematics and Evolution - Tập 60 Số 6 - Trang 1229-1240 - 2022
Huajie Zhang1,2,3, Xu Zhang1,2,3,4, Jacob B. Landis5,6, Yanxia Sun1,2, Jiao Sun1,2,4, Tianhui Kuang7, Lijuan Li1,2,4, Bashir B. Tiamiyu1,2,4, Tao Deng7, Hang Sun7, Hengchang Wang1,2
1CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
2Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
3These authors contributed equally to this study
4University of Chinese Academy of Sciences, Beijing, 100049, China
5BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, 14853 USA
6School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, 14850 USA
7Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

Tóm tắt

AbstractSpecies of Rheum have high medicinal value, with the center of diversity in the Qinghai–Tibet Plateau (QTP) and adjacent regions. However, phylogenetic relationships of Rheum are still unclear due to fragment markers providing insufficient informative loci. Here, we sequenced and annotated plastomes of nine Rheum species, and compared the genome structure among the novel nine species along with three published species. Comparative analyses revealed that plastomes of Rheum share a relatively conserved structure. Five highly divergent regions (accD, ccsA, matK, ndhF, and ndhH) can be used as valuable molecular markers for further species delimitation and population genetic studies. Twenty‐two accessions representing 17 species were used for phylogenetic analysis, which generated a robust phylogenetic tree and revealed two major clades within Rheum. Phylogenetic results showed that glasshouse structures and cushions of Rheum are results of parallel evolution during adaptation to similar environments. Inconsistent tree topology between concatenated and coalescent methods was detected, implying that incomplete lineage sorting and hybridization may have occurred in the evolutionary history of Rheum. Divergence time estimation based on two fossil calibrations and three secondary calibrations revealed a Miocene to middle Oligocene origin of Rheum. Our study provides valuable genomic resources for the medicinally important genus Rheum, while gaining helpful insights into its systematics and evolution.

Từ khóa


Tài liệu tham khảo

10.1093/bioinformatics/bty220

Bao BJ, 2003, Flora of China, 341

10.1093/bioinformatics/btx198

10.1105/tpc.160771

10.1093/nar/27.2.573

10.1093/bioinformatics/btu170

10.1016/j.palaeo.2006.03.028

10.1093/nsr/nwx156

10.1002/j.1537-2197.1947.tb13008.x

Chinese Pharmacopoeia Committee, 2015, Pharmacopoeia of the People's Republic of China

10.1038/nmeth.2109

Dierckxsens N, 2017, Novoplasty: De novo assembly of organelle genomes from whole genome data, Nucleic Acids Research, 45

10.1007/s10592-005-9073-x

Doyle JJ, 2021, Defining coalescent genes: Theory meets practice in organelle phylogenomics, Systematic Biology, 1

10.1186/1471-2148-7-214

10.1111/brv.12107

10.1016/j.palaeo.2006.03.042

10.1093/nar/gkh458

10.1016/j.ympev.2020.106903

10.1016/j.ympev.2019.05.022

10.3390/molecules22020249

10.1093/bioinformatics/17.8.754

10.1093/molbev/msj030

10.1126/science.1122277

10.1093/bioinformatics/bts199

10.1093/molbev/msy096

Lanfear R, 2017, PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses, Molecular Biology and Evolution, 34, 772

Losina‐Losinskaya A, 1936, The genus Rheum and its species, Acta Instituti Botanici Academiae Scientiarum Unionis Rerum Publicarum Soveticarum Socialisticarum, 5

10.1093/nar/25.5.955

10.1111/jse.12682

10.1093/sysbio/46.3.523

10.1007/s12229-010-9041-0

10.1111/j.1469-8137.2010.03195.x

10.1016/j.earscirev.2012.02.003

10.1016/j.ympev.2020.106802

10.1016/S0169-5347(01)02203-0

10.1146/annurev.ge.19.120185.001545

Pamilo P, 1988, Relationships between gene trees and species trees, Molecular Biology and Evolution, 5, 568

10.1080/03036758.1992.10420822

10.1371/journal.pone.0056243

RambautA 2009. FigTree v1. 3.1.http://tree.bio.ed.ac.uk/software/figtree/. last retrieved on 15.3.2021.

10.1093/sysbio/syy032

10.1093/molbev/msy159

10.1186/gb-2003-4-3-209

10.1093/molbev/msx248

10.1371/journal.pone.0061261

10.1186/s12870-020-02466-5

10.1093/bioinformatics/btu033

SuchardMA LemeyP BaeleG AyresDL Drummond AJ RambautA.2018. Bayesian phylogenetic and phylogynamic data integration using BEAST 1.10. Virus evolution 4: vey016.

Sun H, 2002, Tethys retreat and Himalayas‐Hengduanshan Mountains uplift and their significance on the origin and development of the Sino‐Himalayan elements and alpine flora, Acta Botanica Yunnanica, 24, 273

10.1111/jse.12092

10.1016/j.pld.2017.09.004

10.1016/j.ympev.2012.01.002

10.7717/peerj.7747

10.1371/journal.pone.0089769

10.1093/aob/mci201

10.1038/s41598-017-17765-5

10.1371/journal.pone.0110760

10.1093/molbev/mst257

10.1016/j.pld.2020.10.001

10.1093/bioinformatics/13.5.555

10.1016/j.ympev.2018.12.023

10.1111/jse.12597

10.1016/j.ympev.2014.04.017

10.1186/s12859-018-2129-y

10.1111/1755-0998.13096

10.1111/1755-6724.12068

10.1038/35075035

10.1007/s00299-020-02532-0