Journal of Periodontology
SCIE-ISI SCOPUS (SonsInc.)
0022-3492
1943-3670
Mỹ
Cơ quản chủ quản: John Wiley & Sons Inc. , WILEY
Các bài báo tiêu biểu
A classification scheme for periodontal and peri‐implant diseases and conditions is necessary for clinicians to properly diagnose and treat patients as well as for scientists to investigate etiology, pathogenesis, natural history, and treatment of the diseases and conditions. This paper summarizes the proceedings of the World Workshop on the Classification of Periodontal and Peri‐implant Diseases and Conditions. The workshop was co‐sponsored by the American Academy of Periodontology (AAP) and the European Federation of Periodontology (EFP) and included expert participants from all over the world. Planning for the conference, which was held in Chicago on November 9 to 11, 2017, began in early 2015.
An organizing committee from the AAP and EFP commissioned 19 review papers and four consensus reports covering relevant areas in periodontology and implant dentistry. The authors were charged with updating the 1999 classification of periodontal diseases and conditions
This introductory paper presents an overview for the new classification of periodontal and peri‐implant diseases and conditions, along with a condensed scheme for each of four workgroup sections, but readers are directed to the pertinent consensus reports and review papers for a thorough discussion of the rationale, criteria, and interpretation of the proposed classification. Changes to the 1999 classification are highlighted and discussed. Although the intent of the workshop was to base classification on the strongest available scientific evidence, lower level evidence and expert opinion were inevitably used whenever sufficient research data were unavailable.
The scope of this workshop was to align and update the classification scheme to the current understanding of periodontal and peri‐implant diseases and conditions. This introductory overview presents the schematic tables for the new classification of periodontal and peri‐implant diseases and conditions and briefly highlights changes made to the 1999 classification.
T
Periodontal health is defined by absence of clinically detectable inflammation. There is a biological level of immune surveillance that is consistent with clinical gingival health and homeostasis. Clinical gingival health may be found in a periodontium that is intact, i.e. without clinical attachment loss or bone loss, and on a reduced periodontium in either a non‐periodontitis patient (e.g. in patients with some form of gingival recession or following crown lengthening surgery) or in a patient with a history of periodontitis who is currently periodontally stable. Clinical gingival health can be restored following treatment of gingivitis and periodontitis. However, the treated and stable periodontitis patient with current gingival health remains at increased risk of recurrent periodontitis, and accordingly, must be closely monitored.
Two broad categories of gingival diseases include non‐dental plaque biofilm–induced gingival diseases and dental plaque‐induced gingivitis. Non‐dental plaque biofilm‐induced gingival diseases include a variety of conditions that are not caused by plaque and usually do not resolve following plaque removal. Such lesions may be manifestations of a systemic condition or may be localized to the oral cavity. Dental plaque‐induced gingivitis has a variety of clinical signs and symptoms, and both local predisposing factors and systemic modifying factors can affect its extent, severity, and progression. Dental plaque‐induced gingivitis may arise on an intact periodontium or on a reduced periodontium in either a non‐periodontitis patient or in a currently stable “periodontitis patient” i.e. successfully treated, in whom clinical inflammation has been eliminated (or substantially reduced). A periodontitis patient with gingival inflammation remains a periodontitis patient (Figure 1), and comprehensive risk assessment and management are imperative to ensure early prevention and/or treatment of recurrent/progressive periodontitis.
Precision dental medicine defines a patient‐centered approach to care, and therefore, creates differences in the way in which a “case” of gingival health or gingivitis is defined for clinical practice as opposed to epidemiologically in population prevalence surveys. Thus, case definitions of gingival health and gingivitis are presented for both purposes. While gingival health and gingivitis have many clinical features, case definitions are primarily predicated on presence or absence of bleeding on probing. Here we classify gingival health and gingival diseases/conditions, along with a summary table of diagnostic features for defining health and gingivitis in various clinical situations.
Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone, key features of the disease process. An intermediate mechanism that lies between bacterial stimulation and tissue destruction is the production of cytokines, which stimulates inflammatory events that activate effector mechanisms. These cytokines can be organized as chemokines, innate immune cytokines, and acquired immune cytokines. Although they were historically identified as leukocyte products, many are also produced by a number of cell types, including keratinocytes, resident mesenchymal cells (such as fibroblasts and osteoblasts) or their precursors, dendritic cells, and endothelial cells. Chemokines are chemotactic cytokines that play an important role in leukocyte recruitment and may directly or indirectly modulate osteoclast formation. This article focuses on aspects of osteoimmunology that affect periodontal diseases by examining the role of cytokines, chemokines, and immune cell mediators. It summarizes some of the key findings that attempt to delineate the mechanisms by which immune factors can lead to the loss of connective tissue attachment and alveolar bone. In addition, a discussion is presented on the importance of clarifying the process of uncoupling, a process whereby insufficient bone formation occurs following resorption, which is likely to contribute to net bone loss in periodontal disease.
Oral malodor was measured using a portable sulphide monitor in 2,672 individuals aged 18 to 64 years. In addition, dental (DMFT) and periodontal conditions (CPITN and attachment loss), dental plaque, and tongue coating status were assessed. Before clinical examination, subjects were interviewed about their oral health habits, smoking habits, and medical history. Data on volatile sulphur compounds (VSC) were analyzed by gender, age group, and time of measurement. There were no significant differences observed in the VSC between males and females in any age group. In each age group, the measured values of oral malodor were highest in the late morning group (58.6 ppb in average), followed by the late afternoon group (52.1 ppb), while lowest values were shown in the early afternoon group (39.4 ppb). Significant correlation was observed only between the VSC value and periodontal conditions and tongue coating status. The results also suggest that oral malodor might be caused mainly by tongue coating in the younger generation and by periodontal diseases together with tongue coating in older cohorts in the general population. Age was not a risk factor for increasing VSC.