
Journal of Intelligent & Fuzzy Systems
SCOPUS (1993-2023)SCIE-ISI
1064-1246
Cơ quản chủ quản: IOS Press BV , IOS Press
Các bài báo tiêu biểu
The urban ecological risk assessment is a new research field, which has been rising and developing with the change of environment management objectives and environment conception. The urban ecological risk assessment could be regarded as a classical multi-attribute group decision making (MAGDM) issue. The interval-valued intuitionistic fuzzy set (IVIFS) can fully describe the uncertain information for the urban ecological risk assessment. Furthermore, the classical TODIM (an acronym in Portuguese for Interactive Multi-Criteria Decision Making) is built on cumulative prospect theory (CPT), which is a selectable method in reflecting the DMs’ psychological behavior. Thus, in this paper, the TODIM method based on the CPT is proposed for MAGDM issue under IVIFS. At the same time, it is enhancing rationality to get the weight information of attributes by using the interval-valued intuitionistic fuzzy entropy weight method. And focusing on hot issues in contemporary society, this article applies the discussed method to urban ecological risk assessment, and demonstrates urban ecological risk assessment model based on the proposed method. Finally, through comparing the outcome of comparative analysis, we conclude that this improved approach is acceptable.
Path planning for robots plays a vital role to seek the most feasible path due to power requirement, environmental factors and other limitations. The path planning for the autonomous robots is tedious task as the robot needs to locate a suitable path to move between the source and destination points with multifaceted nature. In this paper, we introduced a new technique named modified grey wolf optimization (MGWO) algorithm to solve the path planning problem for multi-robots. MGWO is modified version of conventional grey wolf optimization (GWO) that belongs to the category of metaheuristic algorithms. This has gained wide popularity for an optimization of different parameters in the discrete search space to solve various problems. The prime goal of the proposed methodology is to determine the optimal path while maintaining a sufficient distance from other objects and moving robots. In MGWO method, omega wolves are treated equally as those of delta wolves in exploration process that helps in escalating the convergence speed and minimizing the execution time. The simulation results show that MGWO gives satisfactory performance than other state of art methods for path planning of multiple mobile robots. The performance of the proposed method is compared with the standard evolutionary algorithms viz., Particle Swarm Optimization (PSO), Intelligent BAT Algorithm (IBA), Grey Wolf Optimization (GWO), and Variable Weight Grey Wolf Optimization (VW-GWO) and yielded better results than all of these.