Comparative in vitro treatment of mesenchymal stromal cells with GDF-5 and R57A induces chondrogenic differentiation while limiting chondrogenic hypertrophyJournal of Experimental Orthopaedics - Tập 10 - Trang 1-11 - 2023
Manuel Weißenberger, Mike Wagenbrenner, Joachim Nickel, Rasmus Ahlbrecht, Torsten Blunk, Andre F. Steinert, Fabian Gilbert
Hypertrophic cartilage is an important characteristic of osteoarthritis and can often be found in patients suffering from osteoarthritis. Although the exact pathomechanism remains poorly understood, hypertrophic de-differentiation of chondrocytes also poses a major challenge in the cell-based repair of hyaline cartilage using mesenchymal stromal cells (MSCs). While different members of the transforming growth factor beta (TGF-β) family have been shown to promote chondrogenesis in MSCs, the transition into a hypertrophic phenotype remains a problem. To further examine this topic we compared the effects of the transcription growth and differentiation factor 5 (GDF-5) and the mutant R57A on in vitro chondrogenesis in MSCs. Bone marrow-derived MSCs (BMSCs) were placed in pellet culture and in-cubated in chondrogenic differentiation medium containing R57A, GDF-5 and TGF-ß1 for 21 days. Chondrogenesis was examined histologically, immunohistochemically, through biochemical assays and by RT-qPCR regarding the expression of chondrogenic marker genes. Treatment of BMSCs with R57A led to a dose dependent induction of chondrogenesis in BMSCs. Biochemical assays also showed an elevated glycosaminoglycan (GAG) content and expression of chondrogenic marker genes in corresponding pellets. While treatment with R57A led to superior chondrogenic differentiation compared to treatment with the GDF-5 wild type and similar levels compared to incubation with TGF-ß1, levels of chondrogenic hypertrophy were lower after induction with R57A and the GDF-5 wild type. R57A is a stronger inducer of chondrogenesis in BMSCs than the GDF-5 wild type while leading to lower levels of chondrogenic hypertrophy in comparison with TGF-ß1.
The effect of static stretching exercises on hip range of motion, pain, and disability in patients with non-specific low back painJournal of Experimental Orthopaedics - Tập 8 - Trang 1-6 - 2021
Mohamadreza Hatefi, Farideh Babakhani, Mohadeseh Ashrafizadeh
The benefits of providing static stretching exercise targeting the hips in patients with non-specific Low Back Pain (NSLBP) are not well established. The objective of the study was to verify the effects of static stretching on function, pain and range of motion on patients with non-specific Low Back Pain (NSLBP). Thirty females with NSLBP were randomly assigned to two control (n = 15) and experimental (n = 15) groups. The experimental group received 3 stretch practice sessions per week for a period of 8 weeks. The Oswestry low back pain Disability Questionnaire (ODI), visual analog scale (VAS), and passive hip range of motion (PROM) were employed before and after the intervention. The results of mixed model analysis of variance indicate that the group × time interactions was not significant (p > 0.05) for all measurement outcomes. However, there was a main effect for Time (ODI: p = 0.002, VAS: p = 0.001, PROM-R: p = 0.016, PROM-L: p = 0.001). Such that the ODI, VAS, PROM-R, and PROM-L were showed significant differences before and after the intervention in the experimental group. The results demonstrated a significant difference in PROM, pain, and disability after 8 weeks of stretching exercises in participants with NSLBP and limited hip extension. Therefore, it would be reasonable to infer that NSLBP might be partly related to hip flexors tightness.
Technical note: rectangular femoral tunnel for anterior cruciate ligament reconstruction using a new ultrasonic device: a feasibility studyJournal of Experimental Orthopaedics - - 2021
Romain Seil, Caroline Mouton, Christophe Jacquet
Abstract
Purpose
The goal of this preliminary report was to show the use of novel Ultrasound (US) technology for anterior cruciate ligament (ACL) reconstruction surgery and evaluate its feasibility for the creation of a rectangular femoral bone tunnel during an arthroscopic procedure in a human cadaver model.
Methods
Two fresh frozen human cadaver knees were prepared for arthroscopic rectangular femoral tunnel completion using a prototype US device (OLYMPUS EUROPA SE & CO. KG). The desired rectangular femoral tunnel was intended to be located in the femoral anatomical ACL footprint. Its tunnel aperture was planned at 10 × 5 mm and a depth of 20 mm should be achieved. For one knee, the rectangular femoral tunnel was realized without a specific cutting guide and for the other with a 10 × 5 mm guide. One experienced orthopedic surgeon performed the two procedures consecutively. The time for femoral tunnel completion was evaluated. CT scans with subsequent three-dimensional image reconstructions were performed in order to evaluate tunnel placement and configuration.
Results
In the two human cadaver models the two 10 × 5x20mm rectangular femoral tunnels were successfully completed and located in the femoral anatomical ACL footprint without adverse events. The time for femoral tunnel completion was 14 min 35 s for the procedure without the guide and 4 min 20 s with the guide.
Conclusion
US technology can be used for the creation of a rectangular femoral bone tunnel during an arthroscopic ACL reconstruction procedure. The use of a specific cutting guide can reduce the time for femoral tunnel completion. Additional experience will further reduce the time of the procedure.
Impacted bone allograft personalised by a novel 3D printed customization kit produces high surgical accuracy in medial opening wedge high tibial osteotomy: a pilot studyJournal of Experimental Orthopaedics - Tập 10 - Trang 1-10 - 2023
Wouter Van Genechten, Annemieke Van Haver, Stijn Bartholomeeusen, Toon Claes, Nathalie Van Beek, Jozef Michielsen, Steven Claes, Peter Verdonk
Contemporary medial opening wedge high tibial osteotomy (MOWHTO) still seems to struggle with inconsistent accuracy outcomes. Our objective was to assess surgical accuracy and short-term clinical outcomes when using 3D planning and a patient-specific instrumentation (PSI) kit to prepare customized bone allografts. Thirty subjects (age 48y ± 13) were included in a double-center prospective case series. A low-dose CT-scan was performed to generate 3D bone models, a MOWHTO was simulated, and PSI was designed and 3D printed based on the complementary negative of the planned osteotomy gap. Clinical outcome was assessed at two, four, 12 weeks and one year using NRS, KOOS, UCLA activity score, EQ-5D and anchor questions. A linear-mixed model approach was implemented for data analysis. Preoperative 3D values were 175.0° ± 2.2 mechanical tibiofemoral angle (mTFA), 85.0° ± 3.0 medial proximal tibial angle (MPTA), and 94.1° ± 3.4 medial posterior tibial slope (MPTS). Target planning ranged from slight varus to the lateral tibial spine (slight valgus). Postoperative 3D analysis showed an accuracy of 1.1° ± 0.7 ΔMPTA (p = 0.04) and 1.2° ± 1.2 ΔMPTS (p = 0.11). NRS decreased from baseline 6.1 ± 1.9 to 2.7 ± 1.9 at four weeks (p < 0.001) and 1.7 ± 1.9 at one year (p < 0.001). KOOS increased from 31.4 ± 17.6 to 50.6 ± 20.6 at 12 weeks (p < 0.001) and to 71.8 ± 15.6 at one year (p < 0.001). The study suggests that 3D printed instrumentation to personalize structural bone allograft is a viable alternative method in MOWHTO that has the benefit of optimizing surgical accuracy while providing early and consistent pain relief after surgery.
Reduction of pin tract infections during external fixation using cadexomer iodineJournal of Experimental Orthopaedics - - 2020
M. Jansen, Nienke van Egmond, Esmee C Kester, S.C. Mastbergen, Floris P. J. G. Lafeber, Roel J.H. Custers
Abstract
Purpose
Knee joint distraction (KJD) is a joint-preserving treatment for younger osteoarthritis patients. KJD has shown positive results in regular care, but the external fixation frame often caused pin tract skin infections. Therefore, the use of cadexomer iodine was included in the wound care protocol. The goal of this cross-sectional study was to evaluate whether use of this ointment reduced the number of patients with infections during KJD treatment.
Methods
Patients treated with KJD in regular care were included if they gave consent for use of their data and completed treatment with the newest distraction device before 2020. All patients followed a wound care protocol, which since March 2019 included using cadexomer iodine ointment. The number of patients experiencing pin tract infections was compared between patients who did (March 2019–December 2019) and did not (November 2017–March 2019) use the ointment.
Results
Sixty-seven patients were included; 34 patients used cadexomer iodine and 33 patients did not. Patient who did not use cadexomer iodine experienced twice as many infections (64% vs 32%;p = 0.010). There was a significant difference in the number of patients with serious infections, requiring more antibiotics than the standard 7-day oral antibiotics (30% without vs 6% with cadexomer iodine; p = 0.009).
Conclusions
The use of cadexomer iodine ointment during KJD results in a significant reduction of the number of patients experiencing pin tract infections during treatment. Use of this ointment should be considered standard protocol during KJD treatment and could be of value in general external fixator usage as well.
Biomechanical evaluation of a biomimetic spinal constructJournal of Experimental Orthopaedics - Tập 1 - Trang 1-8 - 2014
Tian Wang, Jonathon R Ball, Mattew H Pelletier, William R Walsh
Laboratory spinal biomechanical tests using human cadaveric or animal spines have limitations in terms of disease transmission, high sample variability, decay and fatigue during extended testing protocols. Therefore, a synthetic biomimetic spine model may be an acceptable substitute. The goal of current study is to evaluate the properties of a synthetic biomimetic spine model; also to assess the mechanical performance of lateral plating following lateral interbody fusion. Three L3/4 synthetic spinal motion segments were examined using a validated pure moment testing system. Moments (±7.5 Nm) were applied in flexion-extension (FE), lateral bending (LB) and axial rotation (AR) at 1Hz for total 10000 cycles in MTS Bionix. An additional test was performed 12 hours after 10000 cycles. A ±10 Nm cycle was also performed to allow provide comparison to the literature. For implantation evaluation, each model was tested in the 4 following conditions: 1) intact, 2) lateral cage alone, 3) lateral cage and plate 4) anterior cage and plate. Results were analysed using ANOVA with post-hoc Tukey’s HSD test. Range of motion (ROM) exhibited logarithmic growth with cycle number (increases of 16%, 37.5% and 24.3% in AR, FE and LB respectively). No signification difference (p > 0.1) was detected between 4 cycles, 10000 cycles and 12 hour rest stages. All measured parameters were comparable to that of reported cadaveric values. The ROM for a lateral cage and plate construct was not significantly different to the anterior lumbar interbody construct for FE (p = 1.00), LB (p = 0.995) and AR (p = 0.837). Based on anatomical and biomechanical similarities, the synthetic spine tested here provides a reasonable model to represent the human lumbar spine. Repeated testing did not dramatically alter biomechanics which may allow non-destructive testing between many different procedures and devices without the worry of carry over effects. Small intra-specimen variability and lack of biohazard makes this an attractive alternative for in vitro spine biomechanical testing. It also proved an acceptable surrogate for biomechanical testing, confirming that a lateral lumbar interbody cage and plate construct reduces ROM to a similar degree as anterior lumbar interbody cage and plate constructs.
CARGEL Bioscaffold improves cartilage repair tissue after bone marrow stimulation in a minipig modelJournal of Experimental Orthopaedics - Tập 7 - Trang 1-11 - 2020
K. Hede, B. B. Christensen, M. L. Olesen, J. S. Thomsen, C. B. Foldager, M. C. Lind
To gain knowledge of the repair tissue in critically sized cartilage defects using bone marrow stimulation combined with CARGEL Bioscaffold (CB) compared with bone marrow stimulation (BMS) alone in a validated animal model. Six adult Göttingen minipigs received two chondral defects in each knee. The knees were randomized to either BMS combined with CB or BMS alone. The animals were euthanized after 6 months. Follow-up consisted of histomorphometry, immunohistochemistry, semiquantitative scoring of the repair tissue (ICRS II), and μCT of the trabecular bone beneath the defect. There was significantly more fibrocartilage (80% vs 64%, p = 0.04) and a trend towards less fibrous tissue (15% vs 30%, p = 0.05) in the defects treated with CB. Hyaline cartilage was only seen in one defect treated with CB and none treated with BMS alone. For histological semiquantitative score (ICRS II), defects treated with CB scored lower on subchondral bone (69 vs. 44, p = 0.04). No significant differences were seen on the other parameters of the ICRS II. Immunohistochemistry revealed a trend towards more positive staining for collagen type II in the CB group (p = 0.08). μCT demonstrated thicker trabeculae (p = 0.029) and a higher bone material density (p = 0.028) in defects treated with CB. Treatment of cartilage injuries with CARGEL Bioscaffold seems to lead to an improved repair tissue and a more pronounced subchondral bone response compared with bone marrow stimulation alone. However, the CARGEL Bioscaffold treatment did not lead to formation of hyaline cartilage.
A preclinical numerical assessment of a polyetheretherketone femoral component in total knee arthroplasty during gaitJournal of Experimental Orthopaedics - Tập 4 - Trang 1-8 - 2017
Lennert de Ruiter, Dennis Janssen, Adam Briscoe, Nico Verdonschot
Conventional total knee replacement designs show high success rates but in the long term, the stiff metal components may affect bone quality of the distal femur. In this study we introduce an all-polymer total knee replacement device containing a PEEK femoral component on an UHMWPE tibial implant and study its mechanical integrity, fixation, and stress shielding of the periprosthetic femur. The implant was analysed in finite element simulations of level gait, adopted from the ISO 14243-1 standard. Mechanical integrity of the implant and underlying cement mantle were tested, and the fixation strength of the cement-implant interface was studied. Stress shielding was assessed based on strain energy density distributions in the distal femur. We compared PEEK and CoCr implants for mechanical performance and fixation, and compared both versions against an intact case to determine the change in bone strain energy density. The mechanical integrity of the PEEK and CoCr components was similar in magnitude, but differences in stress patterns were found. Moreover, the cement mantle was loaded more heavily in the CoCr configuration. Under similar interface properties, the CoCr-cement interface was more at risk of failure than the PEEK-cement interface. The bone strain energy density distribution of the PEEK implant was similar to the intact case, while the CoCr implant showed signs of stress shielding, and a different distribution than the intact and PEEK models. During gait, the PEEK femoral component performed similarly to CoCr, with no added risk for the cement mantle. The reduction in stress shielding for PEEK was evident and confirms the potential reduction in long-term loss of bone stock for this all-polymer knee implant.