Effects of pelvic obliquity and limb position on radiographic leg length discrepancy measurement: a Sawbones model
Tóm tắt
Potential sources of inaccuracy in leg length discrepancy (LLD) measurements commonly arise due to postural malalignment during radiograph acquisition. Preoperative planning techniques for total hip arthroplasty (THA) are particularly susceptible to this inaccuracy, as they often rely solely on radiographic assessments. Owing to the extensive variety of pathologies that are associated with LLD, an understanding of the influence of malpositioning on LLD measurement is crucial. In the present study, we sought to characterize the effects of varying degrees of lateral pelvic obliquity (PO) and mediolateral limb movement in the coronal plane on LLD measurement error (ME). A 3-D sawbones model of the pelvis with bilateral femurs of equal-length was assembled. Anteroposterior pelvic radiographs were captured at various levels of PO: 0°, 5°, 10°, and 15°. At each level of PO, femurs were individually rotated medio-laterally to produce 0°, 5°, 10°, and 15° of abduction/adduction. LLD was measured radiographically at each position combination. For all cases of PO, the right-side of the pelvis was designated as the higher-side, and the left as the lower-side. At 0° PO, 71% of tested variations in femoral abduction/adduction resulted in LLD ME < 0.5-cm, while 29% were ≥ 0.5-cm, but < 1-cm. ME increased progressively as one limb was further abducted while the contralateral limb was simultaneously further adducted. The highest ME occurred with one femur abducted 15° and the other adducted 15°. Similar magnitudes of ME were seen in 98% of tested femoral positions at 5° of PO. The greatest ME (~ 1 cm) occurred at the extremes of right-femur abduction and left-femur adduction. At 10° of PO, a higher prevalence of cases exhibited LLD ME > 0.5-cm (39%) and ≥ 1-cm (8%). The greatest errors occurred at femoral positions similar to those seen at 5° of PO. At 15° of PO, half of tested variations in femoral position resulted in LLD ME > 1-cm, while 22% of cases produced errors > 1.5-cm. These clinically significant errors occurred at all tested variations of right-femur abduction, with the left-femur in either neutral position, abduction, or adduction. This study aids surgeons in understanding the magnitude of radiographic LLD ME produced by varying degrees of PO and femoral abduction/adduction. At a PO of ≤5°, variations in femoral abduction/adduction of up to 15° produce errors of marginal clinical significance. At PO of 10° or 15°, even small changes in mediolateral limb position led to clinically significant ME (> 1-cm). This study also highlights the importance of proper patient positioning during radiograph acquisition, demonstrating the need for surgeons to assess the quality of their radiographs before performing preoperative templating for THA, and accounting for PO (> 5°) when considering the validity of LLD measurements.
Tài liệu tham khảo
Ethgen O, Bruyere O, Richy F, Dardennes C, Reginster JY (2004) Health-related quality of life in total hip and total knee arthroplasty. A qualitative and systematic review of the literature. J Bone Joint Surg Am 86:963–974
Li J, McWilliams AB, Jin Z, Fisher J, Stone MH, Redmond AC et al (2015) Unilateral total hip replacement patients with symptomatic leg length inequality have abnormal hip biomechanics during walking. Clin Biomech (Bristol, Avon) 30:513–519
Austin MS, Hozack WJ, Sharkey PF, Rothman RH (2003) Stability and leg length equality in total hip arthroplasty. J Arthroplast 18:88–90
Friberg O (1984) Biomechanical significance of the correct length of lower limb prostheses: a clinical and radiological study. Prosthetics Orthot Int 8:124–129
Konyves A, Bannister GC (2005) The importance of leg length discrepancy after total hip arthroplasty. J Bone Joint Surg Br 87:155–157
Wylde V, Whitehouse SL, Taylor AH, Pattison GT, Bannister GC, Blom AW (2009) Prevalence and functional impact of patient-perceived leg length discrepancy after hip replacement. Int Orthop 33:905–909
Brady RJ, Dean JB, Skinner TM, Gross MT (2003) Limb length inequality: clinical implications for assessment and intervention. J Orthop Sports Phys Ther 33:221–234
Knutson GA (2015) Anatomic and functional leg-length inequality: a review and recommendation for clinical decision-making. Part I, anatomic leg-length inequality: prevalence, magnitude, effects and clinical significance. Chiropr Osteopat 13:11. https://doi.org/10.1186/1746-1340-13-11.
Lai KA, Lin CJ, Jou IM, Su FC (2001) Gait analysis after total hip arthroplasty with leg-length equalization in women with unilateral congenital complete dislocation of the hip--comparison with untreated patients. J Orthop Res 19:1147–1152
Rösler J, Perka C (2000) The effect of anatomical positional relationships on kinetic parameters after total hip replacement. Int Orthop 24:23–27
Friberg O (1983) Clinical symptoms and biomechanics of lumbar spine and hip joint in leg length inequality. Spine (Phila Pa 1976) 8:643–651
Turula KB, Friberg O, Lindholm TS, Tallroth K, Vankka E (1986) Leg length inequality after total hip arthroplasty. Clin Orthop Relat Res (202):163–8
Parvizi J, Sharkey PF, Bissett GA, Rothman RH, Hozack WJ (2003) Surgical treatment of limb-length discrepancy following total hip arthroplasty. J Bone Joint Surg Am 85:2310–2317
Pritchett JW (2004) Nerve injury and limb lengthening after hip replacement: treatment by shortening. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-200401000-00027168-171
O'Brien S, Kernohan G, Fitzpatrick C, Hill J, Beverland D (2010) Perception of imposed leg length inequality in normal subjects. Hip Int 20:505–511
Ranawat CS (1999) The pants too short, the leg too long! Orthopedics 22:845–846
Eggli S, Pisan M, Müller ME (1998) The value of preoperative planning for total hip arthroplasty. J Bone Joint Surg Br 80:382–390
Bose WJ (2000) Accurate limb-length equalization during total hip arthroplasty. Orthopedics 23:433–436
Woolson ST, Hartford JM, Sawyer A (1999) Results of a method of leg-length equalization for patients undergoing primary total hip replacement. J Arthroplast 14:159–164
Sayed-Noor AS, Hugo A, Sjoden GO, Wretenberg P (2009) Leg length discrepancy in total hip arthroplasty: comparison of two methods of measurement. Int Orthop 33:1189–1193
Heaver C, St Mart JP, Nightingale P, Sinha A, Davis ET (2013) Measuring limb length discrepancy using pelvic radiographs: the most reproducible method. Hip Int 23:391–394
Meermans G, Malik A, Witt J, Haddad F (2011) Preoperative radiographic assessment of limb-length discrepancy in total hip arthroplasty. Clin Orthop Relat Res 469:1677–1682
Kjellberg M, Al-Amiry B, Englund E, Sjödén GO, Sayed-Noor AS (2012) Measurement of leg length discrepancy after total hip arthroplasty. The reliability of a plain radiographic method compared to CT-scanogram. Skelet Radiol 41:187–191
Blake RL, Ferguson H (1992) Limb length discrepancies. J Am Podiatr Med Assoc 82:33–38
Nakanowatari T, Suzukamo Y, Suga T, Okii A, Fujii G, Izumi S-I (2013) True or apparent leg length discrepancy: which is a better predictor of short-term functional outcomes after Total hip arthroplasty? J Geriatr Phys Ther 36:169–174
Ng VY, Kean JR, Glassman AH (2013) Limb-length discrepancy after hip arthroplasty. J Bone Joint Surg Am 95:1426–1436
AGl DV, Padgett DE, Salvati EA (2005) Preoperative planning for primary Total hip arthroplasty. J Am Acad Orthop Surg 13:455–462
Ahmad SS, Kerber V, Konrads C, Ateschrang A, Hirschmann MT, Stöckle U, Ahrend MD (2021) The ischiofemoral space of the hip is influenced by the frontal knee alignment. Knee Surg Sports Traumatol Arthrosc 29(8):2446–2452
Konrads C, Ahrend MD, Beyer MR, Stöckle U, Ahmad SS (2021) Supracondylar rotation osteotomy of the femur influences the coronal alignment of the ankle. J Exp Orthop 8(1):32
Zhou X, Wang Q, Zhang X, Chen Y, Shen H, Jiang Y (2012) Effect of pelvic obliquity on the orientation of the acetabular component in total hip arthroplasty. J Arthroplast 27:299–304
Abel MF, Blanco JS, Pavlovich L, Damiano DL (1999) Asymmetric hip deformity and subluxation in cerebral palsy: an analysis of surgical treatment. J Pediatr Orthop 19:479–485
Zhou X, Wang Q, Zhang X, Chen Y, Peng X, Mao Y et al (2015) Severe pelvic obliquity affects femoral offset in patients with Total hip arthroplasty but not leg-length inequality. Plos One 10:e0144863
Wynn JH, Harrison T, Clifton R, Akinola B, Tucker K (2010) The relationship between abduction contracture and leg length discrepancy following Total hip replacement. Orthopaedic Proceedings 92-B(SUPP_III):389. https://doi.org/10.1302/0301-620x.92bsupp_iii.0920389
Kawamura H, Watanabe Y, Nishino T, Mishima H (2021) Effects of lower limb and pelvic pin positions on leg length and offset measurement errors in experimental total hip arthroplasty. J Orthop Surg Res 16:193
Sarin VK, Pratt WR, Bradley GW (2005) Accurate femur repositioning is critical during intraoperative total hip arthroplasty length and offset assessment. J Arthroplast 20:887–891
Sabharwal S, Kumar A (2008) Methods for assessing leg length discrepancy. Clin Orthop Relat Res 466:2910–2922
Alfuth M, Fichter P, Knicker A (2021) Leg length discrepancy: a systematic review on the validity and reliability of clinical assessments and imaging diagnostics used in clinical practice. Plos One 16:e0261457
Beattie P, Isaacson K, Riddle DL, Rothstein JM (1990) Validity of derived measurements of leg-length differences obtained by use of a tape measure. Phys Ther 70:150–157
Hanada E, Kirby RL, Mitchell M, Swuste JM (2001) Measuring leg-length discrepancy by the “iliac crest palpation and book correction” method: reliability and validity. Arch Phys Med Rehabil 82:938–942
Terry MA, Winell JJ, Green DW, Schneider R, Peterson M, Marx RG et al (2005) Measurement variance in limb length discrepancy: clinical and radiographic assessment of interobserver and intraobserver variability. J Pediatr Orthop 25:197–201
Jamali AA, Mladenov K, Meyer DC, Martinez A, Beck M, Ganz R et al (2007) Anteroposterior pelvic radiographs to assess acetabular retroversion: high validity of the “cross-over-sign”. J Orthop Res 25:758–765
Cleveland RH, Kushner DC, Ogden MC, Herman TE, Kermond W, Correia JA (1988) Determination of leg length discrepancy. A comparison of weight-bearing and supine imaging. Investig Radiol 23:301–304
DelSole EM, Mercuri JJ (2019) Utility of upright weight-bearing imaging in total hip arthroplasty. Semin Musculoskelet Radiol 23:603–608
Clarke IC, Gruen T, Matos M, Amstutz HC (1976) Improved methods for quantitative radiographic evaluation with particular reference to total-hip arthroplasty. Clin Orthop Relat Res:83–91
Conn KS, Clarke MT, Hallett JP (2002) A simple guide to determine the magnification of radiographs and to improve the accuracy of preoperative templating. J Bone Joint Surg Br 84:269–272
Clohisy JC, Carlisle JC, Beaulé PE, Kim YJ, Trousdale RT, Sierra RJ et al (2008) A systematic approach to the plain radiographic evaluation of the young adult hip. J Bone Joint Surg Am 90(Suppl 4):47–66
Jacobsen S, Sonne-Holm S, Søballe K, Gebuhr P, Lund B (2005) Hip dysplasia and osteoarthrosis: a survey of 4151 subjects from the osteoarthrosis substudy of the Copenhagen City heart study. Acta Orthop 76:149–158
Kakaty DK, Fischer AF, Hosalkar HS, Siebenrock KA, Tannast M (2010) The ischial spine sign: does pelvic tilt and rotation matter? Clin Orthop Relat Res 468:769–774
Monazzam S, Agashe M, Hosalkar HS (2013) Reliability of overcoverage parameters with varying morphologic pincer features: comparison of EOS® and radiography. Clin Orthop Relat Res 471:2578–2585
Tannast M, Fritsch S, Zheng G, Siebenrock KA, Steppacher SD (2015) Which radiographic hip parameters do not have to be corrected for pelvic rotation and tilt? Clin Orthop Relat Res 473:1255–1266
Yang Y, Porter D, Zhao L, Zhao X, Yang X, Chen S (2020) How to judge pelvic malposition when assessing acetabular index in children? Three simple parameters can determine acceptability. J Orthop Surg Res 15:12
Dandachli W, Islam SU, Liu M, Richards R, Hall-Craggs M, Witt J (2009) Three-dimensional CT analysis to determine acetabular retroversion and the implications for the management of femoro-acetabular impingement. J Bone Joint Surg Br 91:1031–1036
Konishi N, Mieno T (1993) Determination of acetabular coverage of the femoral head with use of a single anteroposterior radiograph. A new computerized technique. J Bone Joint Surg Am 75:1318–1333
Lee YK, Chung CY, Koo KH, Lee KM, Kwon DG, Park MS (2011) Measuring acetabular dysplasia in plain radiographs. Arch Orthop Trauma Surg 131:1219–1226
Siebenrock KA, Kalbermatten DF, Ganz R (2003) Effect of pelvic tilt on acetabular retroversion: a study of pelves from cadavers. Clin Orthop Relat Res:241–248