thumbnail

Journal of Big Data

  2196-1115

 

 

Cơ quản chủ quản:  Springer Nature , SpringerOpen

Lĩnh vực:
Hardware and ArchitectureInformation SystemsInformation Systems and ManagementComputer Networks and Communications

Các bài báo tiêu biểu

A survey of transfer learning
Tập 3 Số 1 - 2016
Karl R. Weiss, Taghi M. Khoshgoftaar, Dingding Wang
Internet of Things is a revolutionary approach for future technology enhancement: a review
Tập 6 Số 1 - 2019
Sachin Kumar, Prayag Tiwari, Mikhail Zymbler
Abstract

Internet of Things (IoT) is a new paradigm that has changed the traditional way of living into a high tech life style. Smart city, smart homes, pollution control, energy saving, smart transportation, smart industries are such transformations due to IoT. A lot of crucial research studies and investigations have been done in order to enhance the technology through IoT. However, there are still a lot of challenges and issues that need to be addressed to achieve the full potential of IoT. These challenges and issues must be considered from various aspects of IoT such as applications, challenges, enabling technologies, social and environmental impacts etc. The main goal of this review article is to provide a detailed discussion from both technological and social perspective. The article discusses different challenges and key issues of IoT, architecture and important application domains. Also, the article bring into light the existing literature and illustrated their contribution in different aspects of IoT. Moreover, the importance of big data and its analysis with respect to IoT has been discussed. This article would help the readers and researcher to understand the IoT and its applicability to the real world.

CatBoost for big data: an interdisciplinary review
- 2020
John Hancock, Taghi M. Khoshgoftaar
Abstract

Gradient Boosted Decision Trees (GBDT’s) are a powerful tool for classification and regression tasks in Big Data. Researchers should be familiar with the strengths and weaknesses of current implementations of GBDT’s in order to use them effectively and make successful contributions. CatBoost is a member of the family of GBDT machine learning ensemble techniques. Since its debut in late 2018, researchers have successfully used CatBoost for machine learning studies involving Big Data. We take this opportunity to review recent research on CatBoost as it relates to Big Data, and learn best practices from studies that cast CatBoost in a positive light, as well as studies where CatBoost does not outshine other techniques, since we can learn lessons from both types of scenarios. Furthermore, as a Decision Tree based algorithm, CatBoost is well-suited to machine learning tasks involving categorical, heterogeneous data. Recent work across multiple disciplines illustrates CatBoost’s effectiveness and shortcomings in classification and regression tasks. Another important issue we expose in literature on CatBoost is its sensitivity to hyper-parameters and the importance of hyper-parameter tuning. One contribution we make is to take an interdisciplinary approach to cover studies related to CatBoost in a single work. This provides researchers an in-depth understanding to help clarify proper application of CatBoost in solving problems. To the best of our knowledge, this is the first survey that studies all works related to CatBoost in a single publication.

A survey of open source tools for machine learning with big data in the Hadoop ecosystem
- 2015
Sara Landset, Taghi M. Khoshgoftaar, Aaron Richter, Tawfiq Hasanin
An industrial big data pipeline for data-driven analytics maintenance applications in large-scale smart manufacturing facilities
Tập 2 Số 1 - 2015
Peter O’Donovan, Kevin Leahy, Ken Bruton, Dominic O’Sullivan
A review of data mining using big data in health informatics
- 2014
Matthew Herland, Taghi M. Khoshgoftaar, Randall Wald
Abstract

The amount of data produced within Health Informatics has grown to be quite vast, and analysis of this Big Data grants potentially limitless possibilities for knowledge to be gained. In addition, this information can improve the quality of healthcare offered to patients. However, there are a number of issues that arise when dealing with these vast quantities of data, especially how to analyze this data in a reliable manner. The basic goal of Health Informatics is to take in real world medical data from all levels of human existence to help advance our understanding of medicine and medical practice. This paper will present recent research using Big Data tools and approaches for the analysis of Health Informatics data gathered at multiple levels, including the molecular, tissue, patient, and population levels. In addition to gathering data at multiple levels, multiple levels of questions are addressed: human-scale biology, clinical-scale, and epidemic-scale. We will also analyze and examine possible future work for each of these areas, as well as how combining data from each level may provide the most promising approach to gain the most knowledge in Health Informatics.

Big data privacy: a technological perspective and review
Tập 3 Số 1 - 2016
Priyank Jain, Manasi Gyanchandani, Nilay Khare
Enlarging smaller images before inputting into convolutional neural network: zero-padding vs. interpolation
Tập 6 Số 1 - 2019
Mahdi Hashemi
Abstract

The input to a machine learning model is a one-dimensional feature vector. However, in recent learning models, such as convolutional and recurrent neural networks, two- and three-dimensional feature tensors can also be inputted to the model. During training, the machine adjusts its internal parameters to project each feature tensor close to its target. After training, the machine can be used to predict the target for previously unseen feature tensors. What this study focuses on is the requirement that feature tensors must be of the same size. In other words, the same number of features must be present for each sample. This creates a barrier in processing images and texts, as they usually have different sizes, and thus different numbers of features. In classifying an image using a convolutional neural network (CNN), the input is a three-dimensional tensor, where the value of each pixel in each channel is one feature. The three-dimensional feature tensor must be the same size for all images. However, images are not usually of the same size and so are not their corresponding feature tensors. Resizing images to the same size without deforming patterns contained therein is a major challenge. This study proposes zero-padding for resizing images to the same size and compares it with the conventional approach of scaling images up (zooming in) using interpolation. Our study showed that zero-padding had no effect on the classification accuracy but considerably reduced the training time. The reason is that neighboring zero input units (pixels) will not activate their corresponding convolutional unit in the next layer. Therefore, the synaptic weights on outgoing links from input units do not need to be updated if they contain a zero value. Theoretical justification along with experimental endorsements are provided in this paper.

A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 Big Data
- 2020
Joffrey L. Leevy, Taghi M. Khoshgoftaar
Abstract

The exponential growth in computer networks and network applications worldwide has been matched by a surge in cyberattacks. For this reason, datasets such as CSE-CIC-IDS2018 were created to train predictive models on network-based intrusion detection. These datasets are not meant to serve as repositories for signature-based detection systems, but rather to promote research on anomaly-based detection through various machine learning approaches. CSE-CIC-IDS2018 contains about 16,000,000 instances collected over the course of ten days. It is the most recent intrusion detection dataset that is big data, publicly available, and covers a wide range of attack types. This multi-class dataset has a class imbalance, with roughly 17% of the instances comprising attack (anomalous) traffic. Our survey work contributes several key findings. We determined that the best performance scores for each study, where available, were unexpectedly high overall, which may be due to overfitting. We also found that most of the works did not address class imbalance, the effects of which can bias results in a big data study. Lastly, we discovered that information on the data cleaning of CSE-CIC-IDS2018 was inadequate across the board, a finding that may indicate problems with reproducibility of experiments. In our survey, major research gaps have also been identified.