A survey of transfer learning
Tóm tắt
Từ khóa
Tài liệu tham khảo
A literature survey on domain adaptation of statistical classifiers. http://sifaka.cs.uiuc.edu/jiang4/domain_adaptation/survey/da_survey.html . Accessed 4 Mar 2016.
Ando RK, Zhang T. A framework for learning predictive structures from multiple tasks and unlabeled data. J Mach Learn Res. 2005;6:1817–53.
Bay H, Tuytelaars T, Gool LV. Surf: speeded up robust features. Comput Vis Image Underst. 2006;110(3):346–59.
Belkin M, Niyogi P, Sindhwani V. Manifold regularization: a geometric framework for learning from examples. J Mach Learn Res Arch. 2006;7:2399–434.
Blitzer, J, McDonald R, Pereira F. Domain adaptation with structural correspondence learning. In: Proceedings of the 2006 conference on empirical methods in natural language processing. 2006;120–8.
BoChen90 Update TrAdaBoost.m. https://github.com/BoChen90/machine-learning-matlab/blob/master/TrAdaBoost.m . Accessed 4 Mar 2016.
Bolt online learning toolbox. http://pprett.github.com/bolt/ . Accessed 4 Mar 2016.
Bonilla E, Chai KM, Williams C. Multi-task Gaussian process prediction. In: Proceedings of the 20th annual conference of neural information processing systems. 2008. 153–60.
Gong B. http://www-scf.usc.edu/~boqinggo/ . Accessed 4 Mar 2016.
Borgwardt KM, Gretton A, Rasch MJ, Kriegel HP, Schölkopf B, Smola AJ. Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics. 2006;22(4):49–57.
Bruzzone L, Marconcini M. Domain adaptation problems: a DASVM classification technique and a circular validation strategy. IEEE Trans Pattern Anal Mach Intell. 2010;32(5):770–87.
Cao B, Liu N, Yang Q. Transfer learning for collective link prediction in multiple heterogeneous domains. In: Proceedings of the 27th international conference on machine learning. 2010. p. 159–66.
Cawley G. Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs. In: IEEE 2006 international joint conference on neural network proceedings 2006. p. 1661–68.
Chattopadhyay R, Ye J, Panchanathan S, Fan W, Davidson I. Multi-source domain adaptation and its application to early detection of fatigue. ACM Trans Knowl Dis Data (Best of SIGKDD 2011 TKDD Homepage archive) 2011; 6(4) (Article 18).
Chelba C, Acero A. Adaptation of maximum entropy classifier: little data can help a lot. Comput Speech Lang. 2004;20(4):382–99.
Chen M, Xu ZE, Weinberger KQ, Sha F (2012) Marginalized denoising autoencoders for domain adaptation. ICML. arXiv preprintarXiv:1206.4683.
Chung FRK. Spectral graph theory. In: CBMS regional conference series in mathematics, no. 92. Providence: American Mathematical Society; 1994.
Computer Vision and Learning Group. http://vision.cs.uml.edu/adaptation.html . Accessed 4 Mar 2016.
Cook DJ, Feuz KD, Krishnan NC. Transfer learning for activity recognition: a survey. Knowl Inf Syst. 2012;36(3):537–56.
Dai W, Chen Y, Xue GR, Yang Q, Yu Y. Translated learning: transfer learning across different feature spaces. Adv Neural Inform Process Syst. 2008;21:353–60.
Dai W, Yang Q, Xue GR, Yu Y (2007) Boosting for transfer learning. In: Proceedings of the 24th international conference on machine learning. p. 193–200.
Daumé H III. Frustratingly easy domain adaptation. In: Proceedings of ACL. 2007. p. 256–63.
Davis J, Kulis B, Jain P, Sra S, Dhillon I. Information theoretic metric learning. In: Proceedings of the 24th international conference on machine learning. 2007. p. 209–16.
Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R. Indexing by latent semantic analysis. J Am Soc Inf Sci. 1990;41:391–407.
Deng J, Zhang Z, Marchi E, Schuller B. Sparse autoencoder based feature transfer learning for speech emotion recognition. In: Humaine association conference on affective computing and intelligent interaction. 2013. p. 511–6.
Domain adaptation project. https://www.eecs.berkeley.edu/~jhoffman/domainadapt/ . Accessed 4 Mar 2016.
Duan L, Tsang IW, Xu D. Domain transfer multiple kernel learning. IEEE Trans Pattern Anal Mach Intell. 2012;34(3):465–79.
Duan L, Xu D, Chang SF. Exploiting web images for event recognition in consumer videos: a multiple source domain adaptation approach. In: IEEE 2012 conference on computer vision and pattern recognition. 2012. p. 1338–45.
Duan L, Xu D, Tsang IW. Domain adaptation from multiple sources: a domain-dependent regularization approach. IEEE Trans Neural Netw Learn Syst. 2012;23(3):504–18.
Duan L, Xu D, Tsang IW. Learning with augmented features for heterogeneous domain adaptation. IEEE Trans Pattern Anal Mach Intell. 2012;36(6):1134–48.
Eaton E, des Jardins M, Lane T. Modeling transfer relationships between learning tasks for improved inductive transfer. Proc Mach Learn Knowl Disc Database. 2008;5211:317–32.
EasyAdapt.pl.gz (Download). http://hal3.name/easyadapt.pl.gz Accessed 4 Mar 2016.
Evgeniou T, Pontil M (2004) Regularized multi-task learning. In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining. p. 109–17.
Exploiting web images for event recognition in consumer videos: a multiple source domain adaptation approach. http://lxduan.info/papers/DuanCVPR2012_poster.pdf . Accessed 4 Mar 2016.
Farhadi A, Forsyth D, White R. Transfer learning in sign language. In: IEEE 2007 conference on computer vision and pattern recognition. 2007. p. 1–8.
Feuz KD, Cook DJ. Transfer learning across feature-rich heterogeneous feature spaces via feature-space remapping (FSR). J ACM Trans Intell Syst Technol. 2014;6(1):1–27 (Article 3).
Gao J, Fan W, Jiang J, Han J (2008) Knowledge transfer via multiple model local structure mapping. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. p. 283–91.
Gao J, Liang F, Fan W, Sun Y, Han J. Graph based consensus maximization among multiple supervised and unsupervised models. Adv Neural Inf Process Syst. 2009;22:1–9.
Gao K, Khoshgoftaar TM, Wang H, Seliya N. Choosing software metrics for defect prediction: an investigation on feature selection techniques. J Softw Pract Exp. 2011;41(5):579–606.
Ge L, Gao J, Ngo H, Li K, Zhang A. On handling negative transfer and imbalanced distributions in multiple source transfer learning. In: Proceedings of the 2013 SIAM international conference on data mining. 2013. p. 254–71.
Glorot X, Bordes A, Bengio Y. Domain adaptation for large-scale sentiment classification: A deep learning approach. In: Proceedings of the twenty-eight international conference on machine learning, vol. 27. 2011. p. 97–110.
Gong B, Shi Y, Sha F, Grauman K. Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of the 2012 IEEE conference on computer vision and pattern recognition. 2012. p. 2066–73.
Gopalan R, Li R, Chellappa R. Domain adaptation for object recognition: an unsupervised approach. In: 2011 international conference on computer vision. 2011. p. 999–1006.
Guo-Jun Qi’s publication list. http://www.eecs.ucf.edu/~gqi/publications.html . Accessed 4 Mar 2016.
Ham JH, Lee DD, Saul LK. Learning high dimensional correspondences from low dimensional manifolds. In: Proceedings of the twentieth international conference on machine learning. 2003. p. 1–8.
Harel M, Mannor S. Learning from multiple outlooks. In: Proceedings of the 28th international conference on machine learning. 2011. p. 401–8.
He P, Li B, Ma Y (2014) Towards cross-project defect prediction with imbalanced feature sets. http://arxiv.org/abs/1411.4228 .
Heterogeneous defect prediction. http://www.slideshare.net/hunkim/heterogeneous-defect-prediction-esecfse-2015 . Accessed 4 Mar 2016.
HFA_release_0315.rar (Download). https://sites.google.com/site/xyzliwen/publications/HFA_release_0315.rar . Accessed 4 Mar 2016.
Hu M, Liu B. Mining and summarizing customer reviews. In: Proceedings of the 10th ACM SIGKDD international conference on Knowledge discovery and data mining. 2004. p. 168–77.
Huang J, Smola A, Gretton A, Borgwardt KM, Schölkopf B. Correcting sample selection bias by unlabeled data. In: Proceedings of the 2006 conference. Adv Neural Inf Process Syst. 2006. p. 601–8.
Jakob N, Gurevych I. Extracting opinion targets in a single and cross-domain setting with conditional random fields. In: Proceedings of the 2010 conference on empirical methods in NLP. 2010. p. 1035–45.
Jiang J, Zhai C. Instance weighting for domain adaptation in NLP. In: Proceedings of the 45th annual meeting of the association of computational linguistics. 2007. p. 264–71.
Jiang M, Cui P, Wang F, Yang Q, Zhu W, Yang S. Social recommendation across multiple relational domains. In: Proceedings of the 21st ACM international conference on information and knowledge management. 2012. p. 1422–31.
Jiang W, Zavesky E, Chang SF, Loui A. Cross-domain learning methods for high-level visual concept classification. In: IEEE 2008 15th international conference on image processing. 2008. p. 161–4.
Kan M, Wu J, Shan S, Chen X. Domain adaptation for face recognition: targetize source domain bridged by common subspace. Int J Comput Vis. 2014;109(1–2):94–109.
Kloft M, Brefeld U, Sonnenburg S, Zien A. Lp-norm multiple kernel learning. J Mach Learn Res. 2011;12:953–97.
Kulis B, Saenko K, Darrell T. What you saw is not what you get: domain adaptation using asymmetric kernel transforms. In: IEEE 2011 conference on computer vision and pattern recognition. 2011. p. 1785–92.
LeCun Y, Bottou L, HuangFu J. Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, vol. 2. 2004. p. 97–104.
Li B, Yang Q, Xue X. Can movies and books collaborate? Cross-domain collaborative filtering for sparsity reduction. In: Proceedings of the 21st international joint conference on artificial intelligence. 2009. p. 2052–57.
Li B, Yang Q, Xue X. Transfer learning for collaborative filtering via a rating-matrix generative model. In: Proceedings of the 26th annual international conference on machine learning. 2009. p. 617–24.
Li F, Pan SJ, Jin O, Yang Q, Zhu X. Cross-domain co-extraction of sentiment and topic lexicons. In: Proceedings of the 50th annual meeting of the association for computational linguistics long papers, vol. 1. 2012. p. 410–19.
Li S, Zong C. Multi-domain adaptation for sentiment classification: Using multiple classifier combining methods. In: Proceedings of the conference on natural language processing and knowledge engineering. 2008. p. 1–8.
Li W, Duan L, Xu D, Tsang IW. Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation. IEEE Trans Pattern Anal Mach Intell. 2014;36(6):1134–48.
LIBSVM (2016) A library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm . Accessed 4 Mar 2016.
Ling X, Dai W, Xue GR, Yang Q, Yu Y. Spectral domain-transfer learning. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. 2008. p. 488–96.
Lixin Duan. http://www.lxduan.info/#sourcecode_hfa . Accessed 4 Mar 2016.
Long M, Wang J, Ding G, Pan SJ, Yu PS. Adaptation regularization: a general framework for transfer learning. IEEE Trans Knowl Data Eng. 2014;26(5):1076–89.
Long M, Wang J, Ding G, Sun J, Yu PS. Transfer feature learning with joint distribution adaptation. In: Proceedings of the 2013 IEEE international conference on computer vision. 2013. p. 2200–07.
Lowe DG. Distinctive image features from scale-invariant keypoints. Int Comput Vis. 2004;60(2):91–110.
Luo P, Zhuang F, Xiong H, Xiong Y, He Q. Transfer learning from multiple source domains via consensus regularization. In: Proceedings of the 17th ACM conference on information and knowledge management. 2008. p. 103–12.
Ma Y, Gong W, Mao F. Transfer learning used to analyze the dynamic evolution of the dust aerosol. J Quant Spectrosc Radiat Transf. 2015;153:119–30.
Marszalek M, Schmid C, Harzallah H, Van de Weijer J. Learning object representations for visual object class recognition. In: Visual recognition challenge workshop ICCV. 2007. p. 1–10.
Mihalkova L, Mooney RJ. Transfer learning by mapping with minimal target data. In: Proc. assoc. for the advancement of artificial intelligence workshop transfer learning for complex tasks. 2008. p. 31–6.
Long M. http://ise.thss.tsinghua.edu.cn/~mlong/ . Accessed 4 Mar 2016.
Moreno O, Shapira B, Rokach L, Shani G (2012) TALMUD—transfer learning for multiple domains. In: Proceedings of the 21st ACM international conference on information and knowledge management. 2012. p. 425–34.
Nam J, Kim S (2015) Heterogeneous defect prediction. In: Proceedings of the 2015 10th joint meeting on foundations of software engineering. 2015. p. 508–19.
Ng MK, Wu Q, Ye Y. Co-transfer learning via joint transition probability graph based method. In: Proceedings of the 1st international workshop on cross domain knowledge discovery in web and social network mining. 2012. p. 1–9.
Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY. Multimodal deep learning. In: The 28th international conference on machine learning. 2011. p. 689–96.
Ogoe HA, Visweswaran S, Lu X, Gopalakrishnan V. Knowledge transfer via classification rules using functional mapping for integrative modeling of gene expression data. BMC Bioinform. 2015. p. 1–15.
Oquab M, Bottou L, Laptev I, Sivic J. Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the 2014 IEEE conference on computer vision and pattern recognition. 2013. p. 1717–24.
Pan SJ, Kwok JT, Yang Q. Transfer learning via dimensionality reduction. In: Proceedings of the 23rd national conference on artificial intelligence, vol. 2. 2008. p. 677–82.
Pan SJ, Ni X, Sun JT, Yang Q, Chen Z. Cross-domain sentiment classification via spectral feature alignment. In: Proceedings of the 19th international conference on world wide web. 2010. p. 751–60.
Pan W, Liu NN, Xiang EW, Yang Q. Transfer learning to predict missing ratings via heterogeneous user feedbacks. In: Proceedings of the 22nd international joint conference on artificial intelligence. 2011. p. 2318–23.
Pan W. Xiang EW, Liu NN, Yang Q. Transfer learning in collaborative filtering for sparsity reduction. In: Twenty-fourth AAAI conference on artificial intelligence, vol. 1. 2010. p. 230–235.
Pan SJ, Tsang IW, Kwok JT, Yang Q. Domain adaptation via transfer component analysis. IEEE Trans Neural Netw. 2009;22(2):199–210.
Papers:oquab-2014. http://leon.bottou.org/papers/oquab-2014 . Accessed 4 Mar 2016.
Patel VM, Gopalan R, Li R, Chellappa R. Visual domain adaptation: a survey of recent advances. IEEE Signal Process Mag. 2014;32(3):53–69.
Perlich C, Dalessandro B, Raeder T, Stitelman O, Provost F. Machine learning for targeted display advertising: transfer learning in action. Mach Learn. 2014;95:103–27.
Prettenhofer P, Stein B. (2010) Cross-language text classification using structural correspondence learning. In: Proceedings of the 48th annual meeting of the association for computational linguistics. 2010. p. 1118–27.
Qi GJ, Aggarwal C, Huang T. Towards semantic knowledge propagation from text corpus to Web images. In: Proceedings of the 20th international conference on world wide web. p. 297–306.
Qiu G, Liu B, Bu J, Chen C. Expanding domain sentiment lexicon through double propagation. In: Proceedings of the 21st international joint conference on artificial intelligence. p. 1199–204.
Quanz B, Huan J. Large margin transductive transfer learning. In: Proceedings of the 18th ACM conference on information and knowledge management. 2009. p. 1327–36.
Raina R, Battle A, Lee H, Packer B, Ng AY. Self-taught learning: transfer learning from unlabeled data. In: Proceedings of the 24th international conference on machine learning. 2007. p. 759–66.
Rajagopal AN, Subramanian R, Ricci E, Vieriu RL, Lanz O, Ramakrishnan KR, Sebe N. Exploring transfer learning approaches for head pose classification from multi-view surveillance images. Int J Comput Vis. 2014;109(1–2):146–67.
Romera-Paredes B, Aung MSH, Pontil M, Bianchi-Berthouze N, Williams AC de C, Watson P. Transfer learning to account for idiosyncrasy in face and body expressions. In: Proceedings of the 10th international conference on automatic face and gesture recognition (FG). 2013. p. 1–6.
Rosenstein MT, Marx Z, Kaelbling LP, Dietterich TG. To transfer or not to transfer. In: Proceedings NIPS’05 workshop, inductive transfer. 10 years later. 2005. p. 1–4.
Roy S.D., Mei T., Zeng W., Li S. Social transfer: cross-domain transfer learning from social streams for media applications. In: Proceedings of the 20th ACM international conference on multimedia. p. 649–58.
Saenko K, Kulis B, Fritz M, Darrell T. Adapting visual category models to new domains. Comput Vision ECCV. 2010;6314:213–26.
Schweikert G, Widmer C, Schölkopf B, Rätsch G. An empirical analysis of domain adaptation algorithms for genomic sequence analysis. Adv Neural Inf Process Syst. 2009;21:1433–40.
Seah CW, Ong YS, Tsang IW. Combating negative transfer from predictive distribution differences. IEEE Trans Cybern. 2013;43(4):1153–65.
Shao L, Zhu F, Li X. Transfer learning for visual categorization: a survey. IEEE Trans Neural Netw Learn Syst. 2014;26(5):1019–34.
Shawe-Taylor J, Cristianini N. Kernel methods for pattern analysis. Cambridge: Cambridge University Press; 2004.
Shi X, Liu Q, Fan W, Yu PS, Zhu R. Transfer learning on heterogeneous feature spaces via spectral transformation. In: 2010 IEEE international conference on data mining. 2010. p. 1049–1054.
Shi Y, Sha F. Information-theoretical learning of discriminative clusters for unsupervised domain adaptation. In: Proceedings of the 29th international conference on machine learning. 2012. p. 1–8.
Shimodaira H. Improving predictive inference under covariate shift by weighting the log-likelihood function. J Stat Plan Inf. 2000;90(2):227–44.
Shivaji S, Whitehead EJ, Akella R, Kim S. Reducing features to improve code change-based bug prediction. IEEE Trans Softw Eng. 2013;39(4):552–69.
Si S, Tao D, Geng B. Bregman divergence-based regularization for transfer subspace learning. IEEE Trans Knowl Data Eng. 2010;22(7):929–42.
Song Z, Chen Q, Huang Z, Hua Y, Yan S. Contextualizing object detection and classification. IEEE Trans Pattern Anal Mach Intell. 2011;37(1):13–27.
Steinwart I. On the influence of the kernel on the consistency of support vector machines. JMLR. 2001;2:67–93.
Taylor ME, Stone P. Transfer learning for reinforcement learning domains: a survey. JMLR. 2009;10:1633–85.
Tommasi T, Caputo B. The more you know, the less you learn: from knowledge transfer to one-shot learning of object categories. BMVC. 2009;1–11.
Tommasi T, Orabona F, Caputo B. Safety in numbers: learning categories from few examples with multi model knowledge transfer. IEEE Conf Comput Vision Pattern Recog. 2010;2010:3081–8.
Transfer learning resources. http://www.cse.ust.hk/TL/ . Accessed 4 Mar 2016.
Tutorial on domain adaptation and transfer learning. http://tommasit.wix.com/datl14tutorial . Accessed 4 Mar 2016.
Vapnik V. Principles of risk minimization for learning theory. Adv Neural Inf Process Syst. 1992;4:831–8.
Vedaldi A, Gulshan V, Varma M, Zisserman A. Multiple kernels for object detection. In: 2009 IEEE 12th international conference on computer vision. 2009. p. 606–13.
Vincent P, Larochelle H, Bengio Y, Manzagol PA. Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning. 2008. p. 1096–103.
Vinokourov A, Shawe-Taylor J, Cristianini N. Inferring a semantic representation of text via crosslanguage correlation analysis. Adv Neural Inf Proces Syst. 2002;15:1473–80.
Wang C, Mahadevan S. Heterogeneous domain adaptation using manifold alignment. In: Proceedings of the 22nd international joint conference on artificial intelligence, vol. 2. 2011. p. 541–46.
Wang G, Hoiem D, Forsyth DA. Building text Features for object image classification. In: 2009 IEEE conference on computer vision and pattern recognition. 2009. p. 1367–74.
Wang H, Klaser A, Schmid C, Liu CL (2011) Action recognition by dense trajectories. In: IEEE 2011 conference on computer vision and pattern recognition. 2011. p. 3169–76.
Wei B, Pal C (2010) Cross-lingual adaptation: an experiment on sentiment classifications. In: Proceedings of the ACL 2010 conference short papers. 2010. p. 258–62.
Wei B, Pal C (2011) Heterogeneous transfer learning with RBMs. In: Proceedings of the twenty-fifth AAAI conference on artificial intelligence. 2011. p. 531–36.
Weinberger KQ, Saul LK. Distance metric learning for large margin nearest neighbor classification. JMLR. 2009;10:207–44.
Widmer C, Ratsch G. Multitask learning in computational biology. JMLR. 2012;27:207–16.
Wiens J, Guttag J, Horvitz EJ. A study in transfer learning: leveraging data from multiple hospitals to enhance hospital-specific predictions. J Am Med Inform Assoc. 2013;21(4):699–706.
Witten IH, Frank E. Data mining, practical machine learning tools and techniques. 3rd ed. San Francisco: Morgan Kaufmann Publishers; 2011.
Wu X, Xu D, Duan L, Luo J (2011) Action recognition using context and appearance distribution features. In: IEEE 2011 conference on computer vision and pattern recognition. 2011. p. 489–96.
Xia R, Zong C. A POS-based ensemble model for cross-domain sentiment classification. In: Proceedings of the 5th international joint conference on natural language processing. 2011. p. 614–22.
Xia R, Zong C, Hu X, Cambria E. Feature ensemble plus sample selection: domain adaptation for sentiment classification. IEEE Intell Syst. 2013;28(3):10–8.
Xiao M, Guo Y. Semi-supervised kernel matching for domain adaptation. In: Proceedings of the twenty-sixth AAAI conference on artificial intelligence. 2012. p. 1183–89.
Xie M, Jean N, Burke M, Lobell D, Ermon S. Transfer learning from deep features for remote sensing and poverty mapping. In: Proceedings 30th AAAI conference on artificial intelligence. 2015. p. 1–10.
Yang J, Yan R, Hauptmann AG. Cross-domain video concept detection using adaptive SVMs. In: Proceedings of the 15th ACM international conference on multimedia. 2007. p. 188–97.
Yang L, Jing L, Yu J, Ng MK. Learning transferred weights from co-occurrence data for heterogeneous transfer learning. IEEE Trans Neural Netw Learn Syst. 2015;PP(99):1–14.
Yang Q, Chen Y, Xue GR, Dai W, Yu Y. Heterogeneous transfer learning for image clustering via the social web. In: Proceedings of the joint conference of the 47th annual meeting of the ACL, vol. 1. 2009. p. 1–9.
Yao Y, Doretto G. Boosting for transfer learning with multiple sources. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition. 2010. p. 1855–62.
Yin Z. http://www.cse.ust.hk/~yinz/ . Accessed 4 Mar 2016.
Zhang Y, Cao B, Yeung D. Multi-domain collaborative filtering. In: Proceedings of the 26th conference on uncertainty in artificial intelligence. 2010. p. 725–32.
Zhang Y, Yeung DY. Transfer metric learning by learning task relationships. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. 2010. p. 1199–208.
Zhao L, Pan SJ, Xiang EW, Zhong E, Lu Z, Yang Q. Active transfer learning for cross-system recommendation. In: Proceedings of the 27th AAAI conference on artificial intelligence. 2013. p. 1205–11.
Zhong E, Fan W, Peng J, Zhang K, Ren J, Turaga D, Verscheure O. Cross domain distribution adaptation via kernel mapping. In: Proceedings of the 15th ACM SIGKDD. 2009. p. 1027–36.
Zhou JT, Pan S, Tsang IW, Yan Y. Hybrid heterogeneous transfer learning through deep learning. In: Proceedings of the national conference on artificial intelligence, vol. 3. 2014. p. 2213–20.
Zhou JT, Tsang IW, Pan SJ Tan M. Heterogeneous domain adaptation for multiple classes. In: International conference on artificial intelligence and statistics. 2014. p. 1095–103.