Analysis and classification of heart diseases using heartbeat features and machine learning algorithms

Fajr Ibrahem Alarsan1, Mamoon Younes2
1Informatics and Decision Supporting Systems, Higher Institute for Applied Sciences and Technology, Damascus, Syria
2Faculty of Computer and Automation Engineering, Damascus University, Damascus, Syria

Tóm tắt

Từ khóa


Tài liệu tham khảo

Li H, Yuan D, Ma X, Cui D, Cao L. Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Sci Rep. 2017;7:41011.

Kachuee M, Fazeli S, Sarrafzadeh M. ECG heartbeat classification: a deep transferable representation. In: 2018 IEEE international conference on healthcare informatics (ICHI). New York: IEEE; 2018. p. 443–4.

Zhao Z, Yang L, Chen D, Luo Y. A human ECG identification system based on ensemble empirical mode decomposition. Sensors. 2013;13(5):6832–64.

Valenza G, Citi L, Lanatá A, Scilingo EP, Barbieri R. Revealing real-time emotional responses: a personalized assessment based on heartbeat dynamics. Sci Rep. 2014;4:4998.

Valenza G, Greco A, Citi L, Bianchi M, Barbieri R, Scilingo E. Inhomogeneous point-processes to instantaneously assess affective haptic perception through heartbeat dynamics information. Sci Rep. 2016;6:28567.

Christov I, Jekova I, Bortolan G. Premature ventricular contraction classification by the kth nearest-neighbours rule. Physiol Meas. 2005;26(1):123.

Sannino G, De Pietro G. A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Fut Gener Comput Syst. 2018;86:446–55.

Celesti F, Celesti A, Carnevale L, Galletta A, Campo S, Romano A, Bramanti P, Villari M. Big data analytics in genomics: the point on deep learning solutions. In: 2017 IEEE symposium on computers and communications (ISCC). New York: IEEE; 2017. p. 306–9.

Ahmad AK, Jafar A, Aljoumaa K. Customer churn prediction in telecom using machine learning in big data platform. J Big Data. 2019;6(1):28.

Ma’sum M.A, Jatmiko W, Suhartanto H. Enhanced tele ECG system using hadoop framework to deal with big data processing. In: 2016 international workshop on Big Data and information security (IWBIS). New York: IEEE; 2016. p. 121–6.

Dalvi RdF, Zago GT, Andreão RV. Heartbeat classification system based on neural networks and dimensionality reduction. Res Biomed Eng. 2016;32(4):318–26.

Ince T, Kiranyaz S, Gabbouj M. A generic and robust system for automated patient-specific classification of ECG signals. IEEE Trans Biomed Eng. 2009;56(5):1415–26.

O’Brien J. Using hidden Markov models and spark to mine ECG data.

PhysioBank ATM. 2019. https://physionet.org/cgi-bin/atm/ATM . Accessed 21 June 2019.

Moody GB, Mark RG. The impact of the mit-bih arrhythmia database. IEEE Eng Med Biol Mag. 2001;20(3):45–50.

Ho TK. Random decision forests. In: Proceedings of 3rd international conference on document analysis and recognition, vol. 1. New York: IEEE; 1995. p. 278–82.

Gharaviri A, Dehghan F, Teshnelab M, Moghaddam HA. Comparison of neural network, ANFIS, and SVM classifiers for PVC arrhythmia detection. In: 2008 international conference on machine learning and cybernetics, vol. 2. New York: IEEE; 2008. p. 750–5.

PhysioBank ATM Dataset. 2019. https://physionet.org/physiobank/ . Accessed 21 June 2019.

Alzubi J, Nayyar A, Kumar A. Machine learning from theory to algorithms: an overview. In: Journal of physics: conference series, vol. 1142. Bristol: IOP Publishing; 2018. p. 012012.

Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal. 2002;38(4):367–78.

Barandiaran I. The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell. 1998;20(8):122.

Parikh R, Mathai A, Parikh S, Sekhar GC, Thomas R. Understanding and using sensitivity, specificity and predictive values. Indian J Ophthalmol. 2008;56(1):45.

Lalkhen AG, McCluskey A. Clinical tests: sensitivity and specificity. Continuing Educ Anaesth Crit Care Pain. 2008;8(6):221–3.