Journal of Atmospheric Chemistry
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
Direct measurements of nitrogen oxides and ozone fluxes over grassland
Journal of Atmospheric Chemistry - - 1986
A Re-Evaluation of Sulfur Budgets, Lifetimes, and Scavenging Ratios for Eastern North America
Journal of Atmospheric Chemistry - - 1997
Lifetimes, scavenging ratios, andbudgets describe the cycling of atmosphericconstituents and are often used in formulating airpollution control strategies. Most previous studiesof sulfur lifetimes, budgets, and scavenging ratioshave been based on limited observational data or datafrom highly simplified models. The Regional AcidDeposition Model (RADM2.61) shows some skill inpredicting atmospheric mixing ratios of acidicmaterials and other related trace constituents andacid deposition patterns in North America, and so,analysis of its established, theoretical, databaseserves as a counterpoint to previous studies of sulfurbudgets, lifetimes, and scavenging ratios. The annualbudget shows that the net transport (outflow minusinflow) of sulfur compounds out of eastern NorthAmerica is equal to the total deposition within thedomain. Of the total deposition, 63% is from wetdeposition and 37% is from dry deposition. Theannual average lifetime of sulfur dioxide (38 hours),estimated by the turnover time, is limited by aqueousconversion, while that for sulfate aerosols (54 hours)is limited by their removal in precipitation. Theannual average lifetime of sulfur in this domain isslightly more than three days. Episodic lifetimes andbudgets, based on particular synoptic situations, showlarge variations around the annual values. Episodicprecipitation scavenging ratios exhibit similarvariability and are used to offer explanations ofseveral potential biases found in the wet sulfurdeposition amounts as predicted by the EMEP sulfurtransport model and other published results.
Numerical Investigation of Gas Scavenging by Weak Precipitation
Journal of Atmospheric Chemistry - Tập 54 - Trang 203-231 - 2006
A one-dimensional cloud model with size-resolved microphysics and size-resolved aqueous-phase chemistry, driven by prescribed dynamics, has been used to study gas scavenging by weak precipitation developed from low-level, warm stratiform clouds. The dependence of the gas removal rate on the physical and chemical properties of precipitation has been explored under controlled initial conditions. It is found that the removal of four gaseous species (SO2, NH3, H2O2 and HNO3) strongly depends on the total droplet surface area, regardless the mean size of droplets. The removal rates also correlate positively with the precipitation rate, especially for precipitation having a mean radius larger than 20 μm. The dependence of the scavenging coefficients on the total droplet surface area is stronger than on the precipitation rate. The removal rates of SO2, NH3 and H2O2 by precipitation strongly depend on the others' initial concentrations. When NH3 (or H2O2) concentration is much lower than that of SO2, the removal rate of SO2 is then controlled by the concentration of H2O2 (or NH3). The removal of NH3 (or H2O2) also directly depends on the concentration of SO2. NH3 and H2O2 can also indirectly affect each other's removal rate through interaction with SO2. The scavenging coefficient of SO2 increases with the concentration ratio of NH3 to SO2 if the ratio is larger than 0.5, while the scavenging coefficient of NH3 increases with the concentration ratio of SO2 to NH3 when the ratio is smaller than 1. The scavenging coefficient of H2O2 generally increases with the concentration ratio of SO2 to H2O2. Although the Henry's law equilibrium approach seems to be able to simulate gas scavenging by cloud droplets, it causes large errors when used for simulating the scavenging of soluble gas species by droplets of precipitating sizes.
DMS and SO2 Measurements in the Tropical Marine Boundary Layer
Journal of Atmospheric Chemistry - Tập 53 - Trang 145-154 - 2006
Dimethyl sulfide (DMS) and sulfur dioxide (SO2) mixing ratios were measured in the boundary layer on Oahu, Hawaii in April and May 2000. Average DMS and SO2 levels were 22 ± 7 (n = 488) pmol/mol and 23 ± 7 (n = 471) pmol/mol respectively. Anti-correlated DMS and SO2 diurnal cycles, consistent with DMS + OH oxidation were observed on most days. Photochemical box model simulations suggest that the yield of SO2 and total SO2 sink are ∼85% and ∼2 × 104 molec cm− 3 s− 1 respectively. On several days the rate of decrease in DMS and increase in SO2 levels in the early morning were larger that predicted by the model. Dynamical and chemical causes for the anomalous early morning data are explored.
Irvin Glassman: Combustion, 3rd edition
Journal of Atmospheric Chemistry - Tập 27 - Trang 217-218 - 1997
Stratospheric response to chemical perturbations
Journal of Atmospheric Chemistry - Tập 3 - Trang 261-288 - 1985
The paper presents a coupled chemical-radiative one-dimensional model which is used to assess the steady-state and time-dependent composition and temperature changes in relation to the release in the atmosphere of chemicals such as CO2, N2O, CH4, NO
x
and chlorofluorocarbons. The model indicates that a doubling in CO2 leads to an increase in temperature of 12.7 K near the stratopause and to an increase in total ozone of 3.3% with a local enhancement of 17% at 40 km altitude. Additional release of N2O leads to an ozone reduction in the middle stratosphere. The reduction in the ozone column is predicted to be equal to 8.8% when the amount of N2O is doubled. The chemical effect of CH4 on ozone is particularly important in the troposphere. A doubling in the mixing ratio of this gas enhances the O3 concentration by 11% at 5 km. The predicted increase of the ozone column is equal to 1.4%. A constant emission of CFCl3 (230 kT/yr) and CF2Cl2 (300 kT/yr) leads to a steady-state reduction in the ozone column of 1.9% compared to the present-day situation. The effect of some uncertainties in the chemical scheme as well as the impact of a high chlorine perturbation are briefly discussed. Finally the results of a time dependent calculation assuming a realistic scenario for the emission of chemical species are presented and analyzed.
Comparability of Biogenic VOC Emission Rate Measurements under Laboratory and Ambient Conditions at the Example of Monoterpene Emissions from Scots Pine (Pinus sylvestris)
Journal of Atmospheric Chemistry - Tập 45 - Trang 1-23 - 2003
Laboratory experiments under controlled environmental conditions are a useful tool to investigate the influence of different environmental parameters on VOC emissions from plants individually. Before using the obtained results to interpret measurements under ambient conditions, it has to be ensured that the laboratory system is suitable for performing emission rate measurements under ambient-like conditions to derive algorithms describing the emissions of volatile organic compounds as a function of physical variables like temperature and light intensity. Here we compare results from monoterpene emission rate measurements with Scots pines (Pinus sylvestris L.) under both ambient environmental conditions using a mobile plant enclosure chamber, and under controlled laboratory conditions in a continuously stirred tank reactor. The different analytical instruments to quantify monoterpene emissions were compared in an intercalibration experiment. Measurements of the mixing ratios of α -pinene, β -pinene, 3-carene, camphene, and limonene on the order of some hundred parts per trillion differed by less than 20%. The laboratory system has proven capable of providing ambient-like conditions and results of monoterpene emission rate measurements under laboratory conditions could be extrapolated to the natural environment. Monoterpene emission rate measurements with identical specimens of Scots pines conducted within small temporal differences under similar laboratory and outdoor conditions agreed well. Both laboratory and outdoor experiments clearly showed that distinct and constant values neither exist for the standard emission rates nor for the emission pattern of monoterpenes from Scots pine. Temporal variations in the standard emission rates from identical specimens and plant-to-plant variations were on the order of one magnitude.
Spatial Variability of Sampling: Grid Size Impact on Atmospheric Metals and Trace Elements Deposition Mapping with Mosses
Journal of Atmospheric Chemistry - Tập 49 - Trang 39-52 - 2004
This paper deals with the spatial heterogeneity structure and the influence of the precision of moss data on results interpretation as real spatial variations of atmospheric heavy metal deposition. Different sizes of map mesh net (unit I of 30 × 30 km, unit II of 10 × 10 km, unit III of 3 × 3 km) have divided an area of 90 × 90 km. The protocol used is a nested design with three levels and random draws. The statistical method of components of variance analysis estimates the associated variability for each mesh size. Our results show the poor precision of this biological tool for map purposes on a little scale (unit III). Furthermore, the high residual variance of As, Ba, Cd, Co, Cu, La, Ti, and U hides the spatial variations associated with mesh sizes. In order to obtain useful maps, it should be reasonable to use a 30 × 30 km mesh size, or even larger, to build spatial variation maps of Pb, Sb and with more caution for Cu, Sr, Rb and Zn. For V, As and Cd, the residual variability of moss data was too important to guarantee any spatial origin to the mapped variations. The cost–benefit study shows that the sampling effort has to be concentrated on unit I of 30 × 30 km to optimize future campaigns, and with a particular stress on the sampling repetitions for Cu, Pb, and Sb.
Observation of DMSO and CH3S(O)OH from the gas phase reaction between DMS and OH
Journal of Atmospheric Chemistry - Tập 24 - Trang 299-315 - 1996
Products and mechanisms have been investigated for the reactions between dimethylsulfide (DMS) and dimethylsulfoxide (DMSO) and the hydroxyl radical (OH) in the presence of NOx. All of the experiments were performed in a 480 L reaction chamber, applying Fourier transform infrared spectroscopy (FT-IR) and ion chromatography as the analytical techniques. In addition to the sulfur containing products that are known to be produced from the gas phase reaction between DMS and OH (SO2, dimethylsulfone, methylsulfonyl peroxynitrate, methanesulfonic acid, H2SO4), DMSO and methanesulfinic acid (CH3S(O)OH) were also observed as products. Only SO2, DMSO2 and methylsulfonyl peroxynitrate were found as sulfur containing products in the reaction between DMSO and OH. Based on these new results we propose a mechanism for the atmospheric oxidation of DMS and DMSO by OH radical.
Comment on “Kinetics of the reactions of Cl atoms with 2-buten-1-ol, 2-methyl-2-propen-1-ol, and 3-methyl-2-buten-1-ol as a function of temperature” by Rodriguez et al. (J. Atmos. Chem. (2008) 59:187–197)
Journal of Atmospheric Chemistry - Tập 63 Số 1 - Trang 93-94 - 2009
The Arrhenius expressions and the data plotted in Figure 2 of Rodriguez et al. 2008 give rate coefficients of approximately 2 × 10-8 cm3 molecule-1 s-1 at 255 K. Such values are approximately two orders of magnitude larger than expected from simple collision theory (Finlayson-Pitts and Pitts 1986). The rate coefficients reported at sub-ambient temperatures are substantially greater than the gas kinetic limit and are not physically plausible. The rate coefficients reported by Rodriguez et al. imply a long range attraction between the reactants which is not reasonable for reaction of neutral species such as chlorine atoms and unsaturated alcohols. We also note that the pre-exponential A factors (10-23-10-20) and activation energies (−15 kcal mol-1) are not physically plausible. We conclude that there are large systematic errors in the study by Rodriguez et al. (Atmos Chem 59:187–197, 2008).
Tổng số: 1,068
- 1
- 2
- 3
- 4
- 5
- 6
- 10