Model for estimating activity coefficients in binary and ternary ionic surfactant solutions
Tóm tắt
We introduce the CMC based Ionic Surfactant Activity model (CISA) to calculate activity coefficients in ternary aqueous solutions of an ionic surfactant and an inorganic salt. The surfactant can be either anionic or cationic and in the present development, the surfactant and inorganic salts share a common counterion. CISA incorporates micellization into the Pitzer–Debye–Hückel (PDH) framework for activities of mixed electrolyte solutions. To reduce computing requirements, a parametrization of the critical micelle concentration (CMC) is used to estimate the degree of micellization instead of explicit equilibrium calculations. For both binary and ternary systems, CISA only requires binary experimentally-based parameters to describe water–ion interactions and temperature–composition dependency of the CMC. The CISA model is intended in particular for atmospheric applications, where higher-order solution interaction parameters are typically not constrained by experiments and the description must be reliable across a wide range of compositions. We evaluate the model against experimental activity data for binary aqueous solutions of ionic surfactants sodium octanoate and sodium decanoate, as common components of atmospheric aerosols, and sodium dodecylsulfate, the most commonly used model compound for atmospheric surfactants. Capabilities of the CISA model to describe ternary systems are tested for the water–sodium decanoate–sodium chloride system, a common surrogate for marine background cloud condensation nuclei and to our knowledge the only atmospherically relevant system for which ternary activity data is available. For these systems, CISA is able to provide continuous predictions of activity coefficients both below and above CMC and in all cases gives an improved description of the water activity above the CMC, compared to the alternative model of Burchfield and Wolley [J. Phys. Chem., 88(10), 2149–2155 (1984)]. The water activity is a key parameter governing the formation and equilibrium growth of cloud droplets. The CISA model can be extended from the current form to include the effect of other inorganic salts with the existing database of binary PDH parameters and using appropriate mixing rules to account for ion specificity in the micellization process.
Tài liệu tham khảo
Abbatt, J.P.D., Lee, A.K.Y., Thornton, J.A.: Quantifying trace gas uptake to tropospheric aerosol: recent advances and remaining challenges. Chem. Soc. Rev. 41, 6555–6581 (2012). https://doi.org/10.1039/C2CS35052A
Álvarez-Silva, E., García-Abuín, A., Gómez-Díaz, D., Navaza, J.M., Vidal-Tato, I.: Density, Speed of Sound, Surface Tension, and Electrical Conductivity of Sodium Dodecanoate Aqueous Solutions from T = (293.15 to 323.15) K. J. Chem. Eng. Data 55 (9), 4058–4061 (2010). https://doi.org/10.1021/je100186x
Bikkina, P., Kawamura, K., Bikkina, S., Kunwar, B., Tanaka, K., Suzuki, K.: Hydroxy Fatty Acids in Remote Marine Aerosols over the Pacific Ocean: Impact of Biological Activity and Wind Speed. ACS Earth Space Chem. 3(3), 366–379 (2019). https://doi.org/10.1021/acsearthspacechem.8b00161
Blanco, E., González-Pérez, A., Ruso, J.M., Pedrido, R., Prieto, G., Sarmiento, F.: A comparative study of the physicochemical properties of perfluorinated and hydrogenated amphiphiles. J. Colloid Interface Sci. 288(1), 247–260 (2005). https://doi.org/10.1016/J.JCIS.2005.02.085
Brimblecombe, P., Latif, M.T.: Rediscovering atmospheric surfactants. Env. Chem. 1(1), 11–12 (2004). https://doi.org/10.1071/EN05031
Burchfield, T.E., Woolley, E.M.: Model for thermodynamics of ionic surfactant solutions. 1. Osmotic and activity coefficients. J. Phys. Chem. 88(10), 2149–2155 (1984). https://doi.org/10.1021/j150654a042
Bzdek, B.R., Reid, J.P., Malila, J., Prisle, N.L.: The surface tension of surfactant-containing, finite volume droplets. Proc. Natl. Acad. Sci. USA 117(15), 8335–8343 (2020). https://doi.org/10.1073/pnas.1915660117
Clegg, S.L., Seinfeld, J.H., Brimblecombe, P.: Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. J. Aerosol. Sci. 32(6), 713–738 (2001). https://doi.org/10.1016/S0021-8502(00)00105-1
Clegg, S.L., Seinfeld, J.H., Edney, E.O.: Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. II. An extended Zdanovskii—Stokes—Robinson approach. J. Aerosol. Sci. 34(6), 667–690 (2003). https://doi.org/10.1016/S0021-8502(03)00019-3
Chen, C.-C., Bokis, C.P., Mathias, P.: Segment-based excess Gibbs energy model for aqueous organic electrolytes. AIChE J. 47(11), 2593–2602 (2001). https://doi.org/10.1002/aic.690471122
Cochran, R.E., Laskina, O., Trueblood, J.V., Estillore, A.D., Morris, H.S., Jayarathne, T., Sultana, C.M., Lee, C., Lin, P., Laskin, J., Laskin, A., Dowling, J.A., Qin, Z., Cappa, C.D., Bertram, T.H., Tivanski, A.V., Stone, E.A., Prather, K.A., Grassian, V.H.: Molecular Diversity of Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition and Hygroscopicity. Chem. 2(5), 655–667 (2017). https://doi.org/10.1016/j.chempr.2017.03.007
Collins, K.D.: Charge density-dependent strength of hydration and biological structure. Biophys. J. 72(1), 65–76 (1997). https://doi.org/10.1016/S0006-3495(97)78647-8
Corrin, M.L., Harkins, W.D.: The Effect of Salts on the Critical Concentration for the Formation of Micelles in Colloidal Electrolytes. J. Am. Chem. Soc. 69(3), 683–688 (1947). https://doi.org/10.1021/ja01195a065
Cravigan, L.T., Mallet, M.D., Vaattovaara, P., Harvey, M.J., Law, C.S., Modini, R.L., Russell, L.M., Stelcer, E., Cohen, D.D., Olsen, G., Safi, K., Burrell, T.J., Ristovski, Z.: Sea spray aerosol organic enrichment, water uptake and surface tension effects. Atmos. Chem. Phys. 20(13), 7955–7977 (2020). https://doi.org/10.5194/acp-20-7955-2020. https://acp.copernicus.org/articles/20/7955/2020/
Danov, K.D., Kralchevsky, P.A., Ananthapadmanabhan, K.P.: Micelle-monomer equilibria in solutions of ionic surfactants and in ionic-nonionic mixtures: A generalized phase separation model. Adv. Colloid Interface Sci. 206, 17–45 (2014). https://doi.org/10.1016/j.cis.2013.02.001. http://www.sciencedirect.com/science/article/pii/S0001868613000134
Cutler, S.G., Meares, P., Hall, D.G.: Ionic activities in sodium dodecyl sulphate solutions from electromotive force measurements. J. Chem. Soci. 74, 1758–1767 (1978)
De Lisi, R., Perron, G., Paquette, J., Desnoyers, J.E.: Thermodynamics of micellar systems: activity and entropy of sodium decanoate and n-alkylamine hydrobromides in water. Can. J. Chem. 59(13), 1865–1871 (1981). https://doi.org/10.1139/v81-278
Douhéret, G., Viallard, A.: Activity coefficients and micellar equilibria. I. The mass action law model applied to aqueous solutions of sodium carboxylates at 298.15 K. Fluid Ph. Equilibria 8(3), 233–250 (1982). https://doi.org/10.1016/0378-3812(82)80037-X
Durand-Vidal, S., Bernard, O., Medoš, B.-R.M.: Theoretical interpretation of conductivity data below and above the CMC: The case of alkaline ion decanoate solutions. J. Mol. Liq. 309, 112968 (2020). https://doi.org/10.1016/j.molliq.2020.112968
Ekwall, P., Lemström, K.E., Eikrem, H., Holmberg, P., Eriksson, G., Blinc, R., Paušak, S., Ehrenberg, L., Dumanović, J.: The properties and structures of aqueous sodium caprylate solutions. IV. Vapour pressure of the solutions and the osmotic coefficient of the sodium caprylate. Acta. Chem. Scand. 21, 1401–1407 (1967). https://doi.org/10.3891/acta.chem.scand.21-1401
Facchini, M., Mircea, M., Fuzzi, S., Charlson, R.J.: Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 401, 257–259 (1999). https://doi.org/10.1038/45758
Fernández, D.P., Goodwin, A.R.H., Lemmon, E.W., Levelt Sengers, J.M.H., Williams, R.C.: A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye–Hückel coefficients. J. Phys. Chem. Ref. Data 26(4), 1125–1166 (1997). https://doi.org/10.1063/1.555997
Forestieri, S.D., Staudt, S.M., Kuborn, T.M., Faber, K., Ruehl, C.R., Bertram, T.H., Cappa, C.D.: Establishing the impact of model surfactants on cloud condensation nuclei activity of sea spray aerosol mimics. Atmos. Chem. Phys. 18(15), 10985–11005 (2018). https://doi.org/10.5194/acp-18-10985-2018
Gérard, V., Noziére, B., Baduel, C., Fine, L., Frossard, A.A., Cohen, R.C.: Anionic, cationic, and nonionic surfactants in atmospheric aerosols from the Baltic Coast at Askö, Sweden: Implications for cloud droplet activation. Environ. Sci. Technol. 50(6), 2974–2982 (2016). https://doi.org/10.1021/acs.est.5b05809
Gérard, V., Noziere, B., Fine, L., Ferronato, C., Singh, D.K., Frossard, A.A., Cohen, R.C., Asmi, E., Lihavainen, H., Kivekäs, N., Aurela, M., Brus, D., Frka, S., Cvitešić Kušan, A.: Concentrations and adsorption isotherms for amphiphilic surfactants in PM1 aerosols from different regions of Europe. Environ. Sci. Technol. 53(21), 12379–12388 (2019). https://doi.org/10.1021/acs.est.9b03386
Guggenheim, E.A.: Thermodynamics. An Advanced Treatment for Chemists and Physicists, 5th edn., p 390. North-Holland Physics Publishing Division, Amsterdam (1967)
Hashidzume, A., Harada, A.: Micelles and Vesicles. In: Kobayashi, S, Müllen, K (eds.) Encyclopedia of Polymeric Nanomaterials, pp 1238–1241. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)
Hao, L.S., Yang, N., Xu, G.Y., Jia, Y.F., Liu, Q., Nan, Y.Q.: Specific ion effects on the micellization of aqueous mixed cationic/anionic surfactant systems with various counterions. Colloids Surf. A. 504, 161–173 (2016). https://doi.org/10.1016/j.colsurfa.2016.05.073
Høiland, H., Vikingstad, E.: Partial molal volumes and partial molal compressibilities of sodium-dodecanoate in NaCl solutions. J. Colloid Interface Sci. 64 (1), 126–130 (1978). https://doi.org/10.1016/0021-9797(78)90342-9
Imae, T., Sasaki, M., Abe, A., Ikeda, S.: Liquid-liquid phase separation in dilute aqueous solutions of surfactants: the effect of added salt. Langmuir 4(2), 414–418 (1988). https://doi.org/10.1021/la00080a027
Jocić, D.: Conductivity Measurement? A Simple Method for Determining Dye / Surfactant Interaction. Text Res. J. 65(7), 409–416 (1995). https://doi.org/10.1177/004051759506500706
Kale, K.M., Cussler, E.L., Evans, D.F.: Characterization of micellar solutions using surfactant ion electrodes. J. Phys. Chem. 84(6), 593–598 (1980). https://doi.org/10.1021/j100443a007
Karakashev, S.I., Smoukov, S.K.: CMC prediction for ionic surfactants in pure water and aqueous salt solutions based solely on tabulated molecular parameters. J. Colloid Interface Sci. 501, 142–149 (2017). https://doi.org/10.1016/J.JCIS.2017.04.046
Kim, H.T., Frederick, W.J.: Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 ∘C. 1. Single salt parameters. J. Chem. Eng. Data 33(2), 177–184 (1988). https://doi.org/10.1021/je00052a035
Kim, H.T., Frederick, W.J.: Evaluation of Pitzer ion interaction parameters of aqueous mixed electrolyte solutions at 25∘C. 2. Ternary mixing parameters. J. Chem. Eng. Data 33(3), 278–283 (1988). https://doi.org/10.1021/je00053a017
Kim, D.H., Oh, S.G., Cho, C.G.: Effects of Cs and Na ions on the interfacial properties of dodecyl sulfate solutions. Colloid Polym. Sci. 279(1), 39–45 (2001). https://doi.org/10.1007/s003960000393
Kroflič, A., Frka, S., Simmel, M., Wex, H., Grgić, I.: Size-resolved surface-active substances of atmospheric aerosol: Reconsideration of the impact on cloud droplet formation. Environ. Sci. Technol. 52(16), 9179–9187 (2018). https://doi.org/10.1021/acs.est.8b02381
Khoshnood, A., Lukanov, B., Firoozabadi, A.: Temperature Effect on Micelle Formation: Molecular Thermodynamic Model Revisited. Langmuir 32(9), 2175–2183 (2016). https://doi.org/10.1021/acs.langmuir.6b00039
Koroleva, S.V., Korchak, P., Victorov, A.I.: Molecular Thermodynamic Modeling of the Specific Effect of Salt on the Aggregation of Nonionic Surfactants. J. Chem. Eng. Data. https://doi.org/10.1021/acs.jced.9b00303 (2019)
Kunz, W.: Specific ion effects. In: Kunz, W. (ed.) Specific Ion Effects, pp 1–325. World Scientific Publishing Co., Singapore (2009)
Langevin, D.: Micelles and Microemulsions. Annu. Rev. Phys. Chem. 43(1), 341–369 (1992). https://doi.org/10.1146/annurev.pc.43.100192.002013
Levine, I.N.: Physical chemistry, New York: McGraw-Hill (2008)
Li, Z., Williams, A.L., Rood, M.J.: Influence of Soluble Surfactant Properties on the Activation of Aerosol Particles Containing Inorganic Solute. J. Atmos. Sci. 55(10), 1859–1866 (1998). https://doi.org/10.1175/1520-0469(1998)055〈1859:IOSSPO〉2.0.CO;2
Lin, J.J., Kristensen, T.B., Calderón, S.M., Malila, J., Prisle, N.L.: Effects of surface tension time-evolution for CCN activation of a complex organic surfactant. Environ. Sci.: Process. Impacts 22(2), 271–284 (2020). https://doi.org/10.1039/c9em00426b
Lin, J.J., Malila, J., Prisle, N.L.: Cloud droplet activation of organic–salt mixtures predicted from two model treatments of the droplet surface. Environ. Sci. Process. Impacts 20, 1611–1629 (2018). https://doi.org/10.1039/C8EM00345A
Lukanov, B., Firoozabadi, A.: Specific ion effects on the self-assembly of ionic surfactants: A molecular thermodynamic theory of micellization with dispersion forces. Langmuir 30(22), 6373–6383 (2014). https://doi.org/10.1021/la501008x
Malila, J., Prisle, N.L.: A monolayer partitioning scheme for droplets of surfactant solutions. J. Adv. Model. Earth Syst. 10(12), 2018MS001456 (2018). https://doi.org/10.1029/2018MS001456
MacNeil, J.A., Ray, G.B., Sharma, P., Leaist, D.G.: Activity Coefficients of Aqueous Mixed Ionic Surfactant Solutions from Osmometry. J. Solution. Chem. 43(1), 93–108 (2014). https://doi.org/10.1007/s10953-013-0043-5
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M.C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T.F., Murphy, D.M., O’Dowd, C.D., Snider, J.R., Weingartner, E.: The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys. 6(9), 2593–2649 (2006). https://doi.org/10.5194/acp-6-2593-2006
Mochida, M., Kitamori, Y., Kawamura, K., Nojiri, Y., Suzuki, K.: Fatty acids in the marine atmosphere: Factors governing their concentrations and evaluation of organic films on sea-salt particles. J. Geophys. Res. 107(D17), AAC 1–1–AAC 1–10 (2002). https://doi.org/10.1029/2001JD001278
Moreira, L., Firoozabadi, A.: Molecular Thermodynamic Modeling of Specific Ion Effects on Micellization of Ionic Surfactants. Langmuir 26(19), 15177–15191 (2010). https://doi.org/10.1021/la102536y
Muller, N.: Temperature dependence of critical micelle concentrations and heat capacities of micellization for ionic surfactants. Langmuir 9(1), 96–100 (1993). https://doi.org/10.1021/la00025a022
Mukerjee, P.: Critical micelle concentrations of aqueous surfactant systems, U.S. Dept. of Commerce, National Bureau of Standards, Washington, D.C. (1971)
Nozière, B., Gérard, V., Baduel, C., Ferronato, C.: Extraction and Characterization of Surfactants from Atmospheric Aerosols. J. Vis. Exp. 122(e55622). https://doi.org/10.3791/55622 (2017)
Van Ness, H.C., Smith, J., Abbott, M.M.: Introduction to Chemical Engineering Thermodynamics, 6th edn, McGraw-Hill Science/Engineering/Math (2000)
Orlović-Leko, P., Kozarac, Z., Ćosović, B., Strmečki, S., Plavšić, M.: Characterization of atmospheric surfactants in the bulk precipitation by electrochemical tools. J. Atmos. Chem. 66(1), 11–26 (2010). https://doi.org/10.1007/s10874-011-9189-y
Onori, G., D’Angelo, M., Santucci, A.: Study of micelle formation in aqueous sodium n-octanoate solutions. Prog. Coll. Polym. Sci. 97, 154–157 (1994). https://doi.org/10.1007/BFb0115155
Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K.J., Roberts, G., Ceburnis, D., Decesari, S., Rinaldi, M., Hodas, N., Facchini, M.C., Seinfeld, J.H., O’ Dowd, C.: Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature 546(7660), 1–5 (2017). https://doi.org/10.1038/nature22806
Olesen, N.E., Westh, P., Holm, R.: Determination of thermodynamic potentials and the aggregation number for micelles with the mass-action model by isothermal titration calorimetry: A case study on bile salts. J. Colloid Interface Sci. 453, 79–89 (2015). https://doi.org/10.1016/j.jcis.2015.03.069
Pátek, J., Hrubý, J., Klomfar, J., Součková, M., Harvey, A.H.: Reference correlations for thermophysical properties of liquid water at 0.1 MPa. J. Phys. Chem. Ref. Data 38(1), 21–29 (2009). https://doi.org/10.1063/1.3043575
Pereira, R.F.P., Valente, A.J.M., Fernandes, M., Burrows, H.D.: What drives the precipitation of long-chain calcium carboxylates (soaps) in aqueous solution?. Phys. Chem. Chem. Phys 14(20), 7517–7527 (2012). https://doi.org/10.1039/c2cp24152h
Petters, S.S., Petters, M.D.: Surfactant effect on cloud condensation nuclei for two-component internally mixed aerosols. J. Geophys. Res. Atmos. 121, 1878–1895 (2016). https://doi.org/10.1002/2015JD024090
Pfrang, C., Rastogi, K., Cabrera-Martinez, E.R., Seddon, A.M, Dicko, C., Labrador, A., Plivelic, T.S., Cowieson, N., Squires, A.M.: Complex three-dimensional self-assembly in proxies for atmospheric aerosols. Nat. Commun. 8(1), 1724 (2017). https://doi.org/10.1038/s41467-017-01918-1
Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77(2), 268–277 (1973). https://doi.org/10.1021/j100621a026
Pitzer, K.S., Kim, J.J.: Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96(18), 5701–5707 (1974). https://doi.org/10.1021/ja00825a004
Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions, 2nd edn., p 552. CRC Press, New York (2017)
Pitzer, K.S., Peiper, J.C., Busey, R.H.: Thermodynamic Properties of Aqueous Sodium Chloride Solutions. J. Phys. Chem. Ref. Data 13(1), 1–102 (1984). https://doi.org/10.1063/1.555709
Prisle, N.L., Dal Maso, M., Kokkola, H.: A simple representation of surface active organic aerosol in cloud droplet formation. Atmos. Chem. Phys. 11 (9), 4073–4083 (2011). https://doi.org/10.5194/acp-11-4073-2011
Prisle, N.L., Raatikainen, T., Laaksonen, A., Bilde, M.: Surfactants in cloud droplet activation: mixed organic-inorganic particles. Atmos. Chem. Phys. 10(12), 5663–5683 (2010). https://doi.org/10.5194/acp-10-5663-2010
Prisle, N.L., Raatikainen, T., Sorjamaa, R., Svenningsson, B., Laaksonen, A., Bilde, M.: Surfactant partitioning in cloud droplet activation: a study of C8, C10, C12 and C14 normal fatty acid sodium salts. Tellus B. 60(3), 416–431 (2008). https://doi.org/10.1111/j.1600-0889.2008.00352.x
Prisle, N.L., Molgaard, B.: Modeling ccn activity of chemically unresolved model hulis, including surface tension, non-ideality, and surface partitioning. Atmos. Chem. Phys. 2018, 1–23 (2018). https://doi.org/10.5194/acp-2018-789
Prisle, N.L., Asmi, A., Topping, D., Partanen, A., Romakkaniemi, S., Dal Maso, M., Kulmala, M., Laaksonen, A., Lehtinen, K.E.J., McFiggans, G., Kokkola, H.: Surfactant effects in global simulations of cloud droplet activation. Geophys. Res. Lett. 39(5), n/a–n/a (2012). https://doi.org/10.1029/2011GL050467
Raatikainen, T., Laaksonen, A.: Application of several activity coefficient models to water-organic-electrolyte aerosols of atmospheric interest. Atmos. Chem. Phys. 5 (9), 2475–2495 (2005). https://doi.org/10.5194/acp-5-2475-2005
Raatikainen, T., Laaksonen, A.: A simplified treatment of surfactant effects on cloud drop activation. Geosci. Model Dev. 4(1), 107–116 (2011). https://doi.org/10.5194/gmd-4-107-2011
Rodriguez, C.H., Lowery, L.H., Scamehorn, J.F., Harwell, J.H.: Kinetics of precipitation of surfactants. I. Anionic surfactants with calcium and with cationic surfactants. J. Surfactants Deterg. 4(1), 1–14 (2001). https://doi.org/10.1007/s11743-001-0155-7
Rossignol, S., Tinel, L., Bianco, A., Passananti, M., Brigante, M., Donaldson, D.J., George, C.: Atmospheric photochemistry at a fatty acid–coated air-water interface. Science 353(6300), 699–702 (2016). https://doi.org/10.1126/science.aaf3617
Salis, A., Ninham, B.W.: Models and mechanisms of hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem. Soc. Rev. 43, 7358–7377 (2014). https://doi.org/10.1039/C4CS00144C
Sasaki, T., Hattori, M., Sasaki, J., Nukina, K.: Studies of Aqueous Sodium Dodecyl Sulfate Solutions by Activity Measurements. Bull. Chem. Soc. Jpn. 48(5), 1397–1403 (1975). https://doi.org/10.1246/bcsj.48.1397
Scamehorn, J.F., Harwell, J.H.: Mixed surfactant systems, second ed. edn, Marcel Dekker, chap Precipitation of Surfactant Mixtures, p. 793 (2005)
Shaharom, S., Latif, M.T., Khan, M.F., Yusof, S.N.M., Sulong, N.A., Wahid, N.B.A., Uning, R., Suratman, S.: Surfactants in the sea surface microlayer, subsurface water and fine marine aerosols in different background coastal areas. Environ. Sci. Pollut. Res. Int. 25(27), 27074–27089 (2018). https://doi.org/10.1007/s11356-018-2745-0
Sharma, P., MacNeil, J.A., Bowles, J., Leaist, D.G.: The unusual importance of activity coefficients for micelle solutions illustrated by an osmometry study of aqueous sodium decanoate and aqueous sodium decanoate + sodium chloride solutions. Phys. Chem. Chem. Phys. 13(48), 21333 (2011). https://doi.org/10.1039/c1cp22437a
Shinoda, K., Hutchinson, E.: Pseudo-phase separation model for thermodynamic calculations on micellar solutions. J. Phys. Chem. 66(4), 577–582 (1962). https://doi.org/10.1021/j100810a001
Smith, E.R.B., Robinson, R.A.: The vapour pressures and osmotic coefficients of solutions of the sodium salts of a series of fatty acids at 25∘. T. Faraday Soc. 38, 70–78 (1942). https://doi.org/10.1039/TF9423800070
Soustelle, M.: Chemical Equilibria, p 210. John Wiley & Sons, Hoboken, NJ, USA (2015)
Sorjamaa, R., Svenningsson, B., Raatikainen, T., Henning, S., Bilde, M., Laaksonen, A.: The role of surfactants in Köhler theory reconsidered. Atmos. Chem. Phys. 4(8), 2107–2117 (2004). https://doi.org/10.5194/acp-4-2107-2004
Tajima, K., Muramatsu, M., Sasaki, T.: Radiotracer studies on adsorption of surface active substance at aqueous surface. I. Accurate measurement of adsorption of tritiated sodium dodecylsulfate. Bull. Chem. Soc. Jpn. 43(7), 1991–1998 (1970). https://doi.org/10.1246/bcsj.43.1991
Tervahattu, H., Hartonen, K., Kerminen, V.M., Kupiainen, K., Aarnio, P., Koskentalo, T., Tuck, A.F., Vaida, V.: New evidence of an organic layer on marine aerosols. J. Geophys. Res. 107(D7), 4053 (2002). https://doi.org/10.1029/2000JD000282
Tong, C., Clegg, S.L., Seinfeld, J.H.: Comparison of activity coefficient models for atmospheric aerosols containing mixtures of electrolytes, organics, and water. Atmos. Environ. 42(21), 5459–5482 (2008). https://doi.org/10.1016/J.ATMOSENV.2008.02.040
Vikingstad, E., Høiland, H: Partial molal volumes and partial molal compressibilities of n-alkanes in sodium dodecanoate solutions. J. Colloid Interface Sci. 64 (3), 510–513 (1978). https://doi.org/10.1016/0021-9797(78)90392-2
Vikingstad, E., Skauge, A., Høiland, H.: Partial molal volumes and compressibilities of the homologous series of sodium alkylcarboxylates, R6COONa–R13COONa, in aqueous solution. J. Colloid Interface Sci. 66 (2), 240–246 (1978). https://doi.org/10.1016/0021-9797(78)90301-6
Vlachy, N., Drechsler, M., Verbavatz, J-M, Touraud, D., Kunz, W.: Role of the surfactant headgroup on the counterion specificity in the micelle-to-vesicle transition through salt addition. J. Colloid Interface Sci. 319(2), 542–548 (2008). https://doi.org/10.1016/j.jcis.2007.11.048
Warszyński, P., Lunkenheimer, K., Czichocki, G.: Effect of Counterions on the Adsorption of Ionic Surfactants at Fluid Fluid Interfaces. Langmuir 18(7), 2506–2514 (2002). https://doi.org/10.1021/la010381+
Widera, B., Neueder, R., Werner, K.: Vapor pressures and osmotic coefficients of aqueous solutions of SDS, C6TAB, and C8TAB at 25∘C. Langmuir 19, 8226–8229 (2003). https://doi.org/10.1021/LA034714+
Zhu, Y., Free, M.L.: Evaluation of Ion Effects on Surfactant Aggregation from Improved Molecular Thermodynamic Modeling. Ind. Eng. Chem. Res. 54 (36), 9052–9056 (2015). https://doi.org/10.1021/acs.iecr.5b02103
Zuend, A., Marcolli, C., Peter, T., Seinfeld, J.H.: Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols. Atmos. Chem. Phys. 10(16), 7795–7820 (2010). https://doi.org/10.5194/acp-10-7795-2010
Zuend, A., Marcolli, C., Booth, A.M., Lienhard, D.M., Soonsin, V., Krieger, U.K., Topping, D.O., McFiggans, G., Peter, T., Seinfeld, J.H.: New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. Atmos. Chem. Phys. 11(17), 9155–9206 (2011). https://doi.org/10.5194/acp-11-9155-2011
Zuend, A., Seinfeld, J.H.: Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid–liquid phase separation. Atmos. Chem. Phys. 12(9), 3857–3882 (2012). https://doi.org/10.5194/acp-12-3857-2012
Zuend, A., Seinfeld, J.H.: A practical method for the calculation of Liquid-liquid equilibria in multicomponent organic—water—electrolyte systems using physicochemical constraints. Fluid Ph Equilibria 337:201?213. https://doi.org/10.1016/J.FLUID.2012.09.034 (2013)
Zuend, A., Marcolli, C., Luo, B.P., Peter, T.: A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients. Atmos. Chem. Phys. 8(16), 4559–4593 (2008). https://doi.org/10.5194/acp-8-4559-2008