Journal of Applied Meteorology and Climatology

  1558-8424

  1558-8432

  Mỹ

Cơ quản chủ quản:  AMER METEOROLOGICAL SOC , American Meteorological Society

Lĩnh vực:
Atmospheric Science

Các bài báo tiêu biểu

Response of the Sea Breeze to Urbanization in the Pearl River Delta Region
Tập 58 Số 7 - Trang 1449-1463 - 2019
Cheng You, Jimmy Chi Hung Fung, Wai Po Tse
AbstractThe Pearl River delta (PRD) region has undergone rapid urbanization since the 1980s, which has had significant effects on the sea-breeze circulation in this region. Because the sea breeze plays an important role in pollutant transportation and convective initiation in the PRD region, it is meaningful to study the effects of urbanization on the sea breeze. In this study, three numerical experiments were conducted from 2 June to 31 August 2010 with land-use data from 1988, 1999, and 2010. For each simulation, characteristics of the sea breeze such as the start time, end time, intensity, height, pumping ability, and inland penetration distance were quantified. By comparing the characteristics of the sea breeze in these simulations, its response to urbanization was quantified. The results show that urbanization enhances the duration, height, and intensity of the sea breeze but blocks its inland penetration. One physical mechanism is proposed to dynamically elucidate the response of the sea breeze to urbanization. Because the urban area in the PRD region is concentrated near the coast, urbanization imposes a positive heating gradient on the coastal region and a negative heating gradient on the region farther inland. The positive heating gradient may intensify the sea breeze, and the negative heating gradient may prevent the sea breeze from propagating farther inland.
Characteristics of the Sea-Breeze Circulation in the Pearl River Delta Region and Its Dynamical Diagnosis
Tập 58 Số 4 - Trang 741-755 - 2019
Cheng You, Jimmy Chi Hung Fung
AbstractThe Pearl River delta (PRD) region has experienced rapid economic development since the 1980s and has become one of the world’s largest industrial zones and metropolitan areas. Previous studies have shown that the sea-breeze circulation can contribute to pollutant transportation and convective initiation, so it is useful to study the dynamic structure of the sea-breeze circulation in the PRD region. Many researchers have focused on the effects of environmental factors, such as topography, urbanization, and background wind, on the sea breeze, but most focused only on case studies and did not quantify the characteristics of the sea-breeze circulation climatologically. In this study, a sea-breeze identification metric was defined to identify sea-breeze events from WRF simulation data of 2012 and quantify their characteristics, including their start time, end time, strength, height, frequency, pumping ability, and inland-penetrating distance. The results indicate that this method works well to identify and quantify the sea-breeze events of 2012. It is found that the solenoid term, the largest positive contributor to vorticity acceleration, is mostly modulated by the temperature gradient. Therefore, the frontogenesis of the sea-breeze front is discussed in this study. The result shows that offshore background wind that increases frontogenesis is favorable to the development of the sea breeze, but it also prevents it from propagating vertically and horizontally.
A 10-yr Climatology of Tibetan Plateau Vortices with NCEP Climate Forecast System Reanalysis
Tập 53 Số 1 - Trang 34-46 - 2014
Xinyuan Feng, Changhai Liu, Roy Rasmussen, Guangzhou Fan
AbstractA plateau vortex refers to a shallow meso-α-scale cyclonic vortex that is usually confined to near-surface levels (500 hPa) over the Tibetan Plateau during warm seasons. It is the major precipitation-producing weather system over the plateau, but the knowledge of its climatology and understanding of generation mechanisms are limited because of the lack of adequate observations in this harsh mountainous region. In this study, the high-resolution NCEP Climate Forecast System Reanalysis data have been used to perform a statistical survey of these vortices over 10 warm seasons (April–October of 2000–09). The purpose is to document their climatological features, including genesis, size, life cycle, propagation, and diurnal variation.Results show that ~103 plateau vortices occur on average every year. Most are detected from May through August, with the maximum monthly count in July. The primary area of origin exhibits a west–east orientation in correspondence with a large-scale confluence zone, and the most concentrated source lies in the area of 33°–36°N, 84°–90°E in the high elevated central and western plateau. Significant diurnal variations are observed, characteristic of a preferential genesis during late afternoon to evening hours and a late night dissipation peak. The vortex events have an average life span of ~15 h and an average horizontal dimension (effective diameter) of ~280 km. In accordance with the steering environmental flow, an overwhelming majority travel eastward with a mean translation speed of ~10 m s−1. A small fraction of systems (approximately nine cases annually) move off the plateau, predominantly from the eastern edge.
A Study of the Urban Boundary Layer Using Different Urban Parameterizations and High-Resolution Urban Canopy Parameters with WRF
Tập 50 Số 5 - Trang 1107-1128 - 2011
Francisco Salamanca, Alberto Martilli, Mukul Tewari, Fei Chen
AbstractIn the last two decades, mesoscale models (MMs) with urban canopy parameterizations have been widely used to study urban boundary layer processes. Different studies show that such parameterizations are sensitive to the urban canopy parameters (UCPs) that define the urban morphology. At the same time, high-resolution UCP databases are becoming available for several cities. Studies are then needed to determine, for a specific application of an MM, the optimum degree of complexity of the urban canopy parameterizations and the resolution and details necessary in the UCP datasets. In this work, and in an attempt to answer the previous issues, four urban canopy schemes, with different degrees of complexity, have been used with the Weather Research and Forecasting (WRF) model to simulate the planetary boundary layer over the city of Houston, Texas, for two days in August 2000. For the UCP two approaches have been considered: one based on three urban classes derived from the National Land Cover Data of the U.S. Geological Survey and one based on the highly detailed National Urban Database and Access Portal Tool (NUDAPT) dataset with a spatial resolution of 1 km2. Two-meter air temperature and surface wind speed have been used in the evaluation. The statistical analysis shows a tendency to overestimate the air temperatures by the simple bulk scheme and underestimate the air temperatures by the more detailed urban canopy parameterizations. Similarly, the bulk and single-layer schemes tend to overestimate the wind speed while the multilayer schemes underestimate it. The three-dimensional analysis of the meteorological fields revealed a possible impact (to be verified against measurements) of both the urban schemes and the UCP on cloud prediction. Moreover, the impact of air conditioning systems on the air temperature and their energy consumption has been evaluated with the most developed urban scheme for the two simulated days. During the night, this anthropogenic heat was responsible for an increase in the air temperature of up to 2°C in the densest urban areas, and the estimated energy consumption was of the same magnitude as energy consumption obtained with different methods when the most detailed UCP database was used. On the basis of the results for the present case study, one can conclude that if the purpose of the simulation requires only an estimate of the 2-m temperature a simple bulk scheme is sufficient but if the purpose of the simulation is an evaluation of an urban heat island mitigation strategy or the evaluation of the energy consumption due to air conditioning at city scale, it is necessary to use a complex urban canopy scheme and a detailed UCP.
Dependence of the Ice Water Content and Snowfall Rate on Temperature, Globally: Comparison of in Situ Observations, Satellite Active Remote Sensing Retrievals, and Global Climate Model Simulations
Tập 56 Số 1 - Trang 189-215 - 2017
Andrew J. Heymsfield, Martina Krämer, Norman B. Wood, Andrew Gettelman, M. W. Gallagher, Guosheng Liu
AbstractCloud ice microphysical properties measured or estimated from in situ aircraft observations are compared with global climate models and satellite active remote sensor retrievals. Two large datasets, with direct measurements of the ice water content (IWC) and encompassing data from polar to tropical regions, are combined to yield a large database of in situ measurements. The intention of this study is to identify strengths and weaknesses of the various methods used to derive ice cloud microphysical properties. The in situ data are measured with total water hygrometers, condensed water probes, and particle spectrometers. Data from polar, midlatitude, and tropical locations are included. The satellite data are retrieved from CloudSat/CALIPSO [the CloudSat Ice Cloud Property Product (2C-ICE) and 2C-SNOW-PROFILE] and Global Precipitation Measurement (GPM) Level2A. Although the 2C-ICE retrieval is for IWC, a method to use the IWC to get snowfall rates S is developed. The GPM retrievals are for snowfall rate only. Model results are derived using the Community Atmosphere Model (CAM5) and the Met Office Unified Model [Global Atmosphere 7 (GA7)]. The retrievals and model results are related to the in situ observations using temperature and are partitioned by geographical region. Specific variables compared between the in situ observations, models, and retrievals are the IWC and S. Satellite-retrieved IWCs are reasonably close in value to the in situ observations, whereas the models’ values are relatively low by comparison. Differences between the in situ IWCs and those from the other methods are compounded when S is considered, leading to model snowfall rates that are considerably lower than those derived from the in situ data. Anomalous trends with temperature are noted in some instances.
The Retrieval of Ice Water Content from Radar Reflectivity Factor and Temperature and Its Use in Evaluating a Mesoscale Model
Tập 45 Số 2 - Trang 301-317 - 2006
Robin J. Hogan, Marion Mittermaier, Anthony J. Illingworth
Abstract Ice clouds are an important yet largely unvalidated component of weather forecasting and climate models, but radar offers the potential to provide the necessary data to evaluate them. First in this paper, coordinated aircraft in situ measurements and scans by a 3-GHz radar are presented, demonstrating that, for stratiform midlatitude ice clouds, radar reflectivity in the Rayleigh-scattering regime may be reliably calculated from aircraft size spectra if the “Brown and Francis” mass–size relationship is used. The comparisons spanned radar reflectivity values from −15 to +20 dBZ, ice water contents (IWCs) from 0.01 to 0.4 g m−3, and median volumetric diameters between 0.2 and 3 mm. In mixed-phase conditions the agreement is much poorer because of the higher-density ice particles present. A large midlatitude aircraft dataset is then used to derive expressions that relate radar reflectivity and temperature to ice water content and visible extinction coefficient. The analysis is an advance over previous work in several ways: the retrievals vary smoothly with both input parameters, different relationships are derived for the common radar frequencies of 3, 35, and 94 GHz, and the problem of retrieving the long-term mean and the horizontal variance of ice cloud parameters is considered separately. It is shown that the dependence on temperature arises because of the temperature dependence of the number concentration “intercept parameter” rather than mean particle size. A comparison is presented of ice water content derived from scanning 3-GHz radar with the values held in the Met Office mesoscale forecast model, for eight precipitating cases spanning 39 h over southern England. It is found that the model predicted mean IWC to within 10% of the observations at temperatures between −30° and −10°C but tended to underestimate it by around a factor of 2 at colder temperatures.
Relationships between Ice Water Content and Volume Extinction Coefficient from In Situ Observations for Temperatures from 0° to −86°C: Implications for Spaceborne Lidar Retrievals
Tập 53 Số 2 - Trang 479-505 - 2014
Andrew J. Heymsfield, D. M. Winker, M. A. Avery, Mark Vaughan, Glenn S. Diskin, Min Deng, Valentin Mitev, Renaud Matthey
AbstractAn examination of 2 yr of Cloud–Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) lidar observations and CloudSat cloud radar observations shows that ice clouds at temperatures below about −45°C frequently fall below the CloudSat radar’s detection threshold yet are readily detectable by the lidar. The CALIPSO ice water content (IWC) detection threshold is about 0.1 versus 5 mg m−3 for CloudSat. This comparison emphasizes the need for developing a lidar-only IWC retrieval method that is reliable for high-altitude ice clouds at these temperatures in this climatically important zone of the upper troposphere. Microphysical measurements from 10 aircraft field programs, spanning latitudes from the Arctic to the tropics and temperatures from −86° to 0°C, are used to develop relationships between the IWC and volume extinction coefficient σ in visible wavelengths. Relationships used to derive a radiatively important ice cloud property, the ice effective diameter De, from σ are also developed. Particle size distributions (PSDs) and direct IWC measurements, together with evaluations of the ice particle shapes and comparisons with semidirect extinction measurements, are used in this analysis. Temperature-dependent De(σ) and IWC–σ relationships developed empirically facilitate the retrieval of IWC from lidar-derived σ and De values and for comparison with other IWC observations. This suite of empirically derived relationships can be expressed analytically. These relationships can be used to derive IWC and De from σ and are developed for use in climate models to derive σ from prognosed values of IWC and specified PSD properties.
Empirical Relations between Size Parameters of Ice Hydrometeor Populations and Radar Reflectivity
Tập 56 Số 9 - Trang 2479-2488 - 2017
Sergey Y. Matrosov, Andrew J. Heymsfield
AbstractEmpirical power-law relations between the equivalent radar reflectivity factor Ze and the slope parameter of the gamma function Λ (i.e., Λ = c; used to describe ice hydrometeor size distributions) are derived. The Λ parameter can also be considered as a size parameter since it is proportional to the inverse of the hydrometeor characteristic size, which is an important geophysical parameter describing the entire distribution. Two datasets from two-dimensional microphysical probes, collected during aircraft flights in subtropical and midlatitude regions, were used to obtain Λ by fitting measured size distributions. Reflectivity for different radar frequencies was calculated from microphysical probe data by using nonspherical-particle models. The derived relations have exponent d values that are approximately from −0.35 to −0.40, and the prefactors c are approximately between 30 and 55 (Λ: cm−1; Ze: mm6 m−3). There is a tendency for d and c to decrease when radar frequency increases from Ku band (~14 GHz) to W band (~94 GHz). Correlation coefficients between Ze and Λ can be very high (~0.8), especially for lower frequencies. Such correlations are similar to those for empirical relations between reflectivity and ice water content (IWC), which are used in many modeling and remote sensing applications. Close correspondences of reflectivity to both Λ and IWC are due to a relatively high correlation between these two microphysical parameters. Expected uncertainties in estimating Λ from reflectivity could be as high as a factor of 2, although estimates at lower radar frequencies are more robust. Stratifying retrievals by temperature could result in relatively modest improvement of Λ estimates.
Cirrus Cloud Properties and the Large-Scale Meteorological Environment: Relationships Derived from A-Train and NCEP–NCAR Reanalysis Data
Tập 52 Số 5 - Trang 1253-1276 - 2013
Elizabeth Berry, Gerald G. Mace
AbstractEmpirical knowledge of how cirrus cloud properties are coupled with the large-scale meteorological environment is a prerequisite for understanding the role of microphysical processes in the life cycle of cirrus cloud systems. Using active and passive remote sensing data from the A-Train, relationships between cirrus cloud properties and the large-scale dynamics are examined. Mesoscale cirrus events from along the A-Train track from 1 yr of data are sorted on the basis of vertical distributions of radar reflectivity and on large-scale meteorological parameters derived from the NCEP–NCAR reanalysis using a K-means cluster-analysis algorithm. With these defined regimes, the authors examine two questions: Given a cirrus cloud type defined by cloud properties, what are the large-scale dynamics? Vice versa, what cirrus cloud properties tend to emerge from large-scale dynamics regimes that tend to form cirrus? From the answers to these questions, the links between the large-scale dynamics regimes and the genre of cirrus that evolve within these regimes are identified. It is found that, to a considerable extent, the large-scale environment determines the bulk cirrus properties and that, within the dynamics regimes, cirrus cloud systems tend to evolve through life cycles, the details of which are not necessarily explained by the large-scale motions alone. These results suggest that, while simple relationships may be used to parameterize the gross properties of cirrus, more sophisticated parameterizations are required for representing the detailed structure and radiative feedbacks of these clouds.
Characterizing the Diurnal Cycle of Low-Level Circulation and Convergence Using CFSR Data in Southeastern South America
Tập 54 Số 3 - Trang 671-690 - 2015
Henrique Fuchs Bueno Repinaldo, Matilde Nicolini, Yanina García Skabar
AbstractThe focus of this study is the characterization of the diurnal cycle of low-level wind and divergence field (under two different synoptic situations observed during the South American Low-Level Jet Experiment) within the South American domain encompassed between 20° and 35°S east of the Andes, using Climate Forecast System Reanalysis (CFSR). The objective is to highlight the existence of a spatial variation of these quantities and differences in the strength of their diurnal cycle between the two synoptic situations. Inertial oscillations and thermally driven circulations as well as convection-related contributions to mesoscale convergence and their implications for deep convection initiation/maintenance are addressed in each selected subregion. Prevalence of synoptic-scale forcing over the diurnally forced circulations, or vice versa, is also analyzed. Both mesoscale wind diurnal cycle and related divergence fields are sensitive to varying synoptic conditions and display regional variability. Thermal circulations related to topographical features superpose on the diurnal inertial oscillation that, while present in the whole domain, dominates the central plain subregions. The most evident diurnal cycle in the divergence field is restricted to sloped areas just to the east of the Andes and the Sierras de Córdoba where the mesoscale component of the divergence field is responsible for modulating the total divergence. CFSR provides a broad perspective of low-level circulation over southeastern South America (SESA) during the specific 15-day period. Results from this study might stimulate future research on a relationship between low-level circulation and the initiation of convection in SESA using CFSR to perform high-resolution simulations.