
Các bài báo tiêu biểu
Waste management (WM) is a demanding undertaking in all countries, with important implications for human health, environmental preservation, sustainability and circular economy. The method of sanitary landfilling for final disposal of waste remains a generally accepted and used method but the available scientific evidence on the waste-related environmental and health effects is not conclusive. Comparative studies of various WM methods (landfilling, incineration, composting etc.) show that among the municipal solid waste (MSW) treatment and disposal technological options, sanitary landfilling or open dumping is popular in most countries because of the relative low cost and low-technical requirement. The European Union (EU) Directive on waste landfills has introduced specific goals for reducing the volume of disposed waste and very strict requirements for landfilling and landfill sites. Evaluation of the impact of landfills on the environment is a crucial topic in the literature and has received increased attention recently, given growing environmental concerns. The main goal of this survey was to conduct a comprehensive assessment of possible impacts of MSW landfills on the environment. The main conclusion of the overall assessment of the literature is that the disposal of MSW in landfills entails a number of environmental risks but with respect to the current situation and rich style of living adopted in industrially developed countries, the idea of WM systems functioning without landfilling—at least in the foreseeable future within one generation—seems to be somewhat unreal. The results also provided important information of landfills as a source of environmental risk. Results of this research may have an important impact on landfill management and the disposal of waste. From the literature review, it is evident that even if high levels of waste avoidance, reuse and recycling are achieved, some waste materials will always need to be forwarded for disposal.
Climate reanalyses provide key information to calibrate proxy records in regions with scarce direct observations. The climate reanalysis used to perform a proxy calibration should accurately reproduce the local climate variability. Here we present a regional scale evaluation of meteorological parameters using ERA-Interim and ERA5 reanalyses compared to in-situ observations from 13 automatic weather stations (AWS), located in the southern Antarctic Peninsula and Ellsworth Land, Antarctica. Both reanalyses seem to perform better in the escarpment area (>1000 m a.s.l) than on the coast. A significant improvement is observed in the performance of ERA5 over ERA-Interim. ERA5 is highly accurate, representing the magnitude and variability of near-surface air temperature and wind regimes. The higher spatial and temporal resolution provided by ERA5 reduces significantly the cold coastal biases identified in ERA-Interim and increases the accuracy representing the wind direction and wind speed in the escarpment. The slight underestimation in the wind speed obtained from the reanalyses could be attributed to an interplay of topographic factors and the effect of local wind regimes. Three sites in this region are highlighted for their potential for ice core studies. These sites are likely to provide accurate proxy calibrations for future palaeoclimatic reconstructions.
The stable carbon isotope ratios of coalbed methane (CBM) demonstrate diagnostic changes that systematically vary with production and desorption times. These shifts can provide decisive, predictive information on the behaviour and potential performance of CBM operations. Samples from producing CBM wells show a general depletion in 13C-methane with increasing production times and corresponding shifts in δ13C-CH4 up to 35.8‰. Samples from canister desorption experiments show mostly enrichment in 13C for methane with increasing desorption time and isotope shifts of up to 43.4‰. Also, 13C-depletion was observed in some samples with isotope shifts of up to 32.1‰. Overall, the magnitudes of the observed isotope shifts vary considerably between different sample sets, but also within samples from the same source. The δ13C-CH4 values do not have the anticipated signature of methane generated from coal. This indicates that secondary processes, including desorption and diffusion, can influence the values. It is also challenging to deconvolute these various secondary processes because their molecular and isotope effects can have similar directions and/or magnitudes. In some instances, significant alteration of CBM gases has to be considered as a combination of secondary alteration effects.
The large-scale seismic risk assessment is a crucial point for safeguarding people and planning adequate mitigation plans in urban areas. The current research work aims at analysing a sector of the historic centre of Senerchia, located in the province of Avellino, in order to assess the seismic vulnerability and damage of old masonry building compounds. First, the typological classification of the inspected building aggregates is developed using the CARTIS form developed by the PLINIVS research centre in collaboration with the Italian Civil Protection Department. The global seismic vulnerability assessment of the building sample is carried out using the macroseismic method according to the EMS-98 scale in order to identify the buildings most susceptible to seismic damage. Furthermore, 12 damage scenarios are developed by means of an appropriate seismic attenuation law. Finally, the expected damage scenarios considering the local hazard effects induced are developed in order to evaluate the damage increment, averagely equal to 50%, due to the seismic amplification of different soil categories.
Airborne LiDAR is a widely accepted tool for archaeological prospection. Over the last decade an archaeology-specific data processing workflow has been evolving, ranging from raw data acquisition and processing, point cloud processing and product derivation to archaeological interpretation, dissemination and archiving. Currently, though, there is no agreement on the specific steps or terminology. This workflow is an interpretative knowledge production process that must be documented as such to ensure the intellectual transparency and accountability required for evidence-based archaeological interpretation. However, this is rarely the case, and there are no accepted schemas, let alone standards, to do so. As a result, there is a risk that the data processing steps of the workflow will be accepted as a black box process and its results as “hard data”. The first step in documenting a scientific process is to define it. Therefore, this paper provides a critical review of existing archaeology-specific workflows for airborne LiDAR-derived topographic data processing, resulting in an 18-step workflow with consistent terminology. Its novelty and significance lies in the fact that the existing comprehensive studies are outdated and the newer ones focus on selected aspects of the workflow. Based on the updated workflow, a good practice example for its documentation is presented.
In countries with steep rivers, such as Japan and the United States, bridges fail on an annual basis. Bridges on spread footings are especially susceptible to failure by hydrodynamic loading, often exacerbated by debris damming. Here, such failures are investigated via small scale model laboratory experiments and full scale numerical simulations. In the laboratory, lift and drag forces and overturning moment on bridge decks, piers, and deck-pier systems, are measured and compared with threshold of failure criteria used in design guidelines. Effects of debris on lift, drag, and moment, as well as three-dimensional effects, are quantified. Via numerical simulations, flow patterns and free surface behaviour responsible for these forces are investigated, and described in a framework as a function of the water depth, flow speed, deck clearance, and girder height. Results show that current guidelines are non-conservative in some cases. Importantly, failure of both decks and piers can be prevented by strengthening pier-deck connections, or by streamlining decks.
La Garrotxa Volcanic Zone is a suitable case study to analyze the impact and sustainability of geotourism on a protected volcanic field, as it has allowed the transformation of a poorly known territory into one of the best known and most visited geosites of Catalonia (Spain). The protection of this volcanic area represented the end of legal and illegal quarrying activities that significantly damaged most of its volcanoes, but also provided an opportunity to develop the zone for tourism. We compiled the available information from its establishment in 1982 as a natural park by the Catalan Government to the present day, in order to analyze the socio-economic impact of geotourism on this protected area and its surroundings. We paid attention to its evolution in terms of the number of visitors, the social and economic consequences that this type of tourism has had, and whether it is compatible with the conservation of natural assets, especially geological ones. We also studied the role that the co-management of the protected space by local administrations and private entities has had on its sustainability. The results obtained are relevant to visualizing the viability of geotourism in a protected area by combining the economic drive and the conservation of natural assets. Spaces such as La Garrotxa Volcanic Zone represent natural laboratories where we can observe the success of the application of environmentally friendly policies with a positive socioeconomic impact on geotourism.
Air-fall pyroclastic deposits on steep slopes in Campania (Southern Italy) are periodically subjected to rainfall-induced landslides that may evolve into catastrophic flowslides. To protect built-up areas, early warning systems (EWSs) have been implemented which are essentially based on pluviometric thresholds or models unable to accurately monitor the physical phenomena responsible for flowslide generation in pyroclastic deposits. Over the last 20 years, landslides with no evolution in flows occurred in this area and the alarms generated by existing EWSs in the cases of rainfall were both false and highly costly, thus eroding public trust in EWSs. To improve existing EWSs, two complex models for pyroclastic soils (Cervinara and Sarno) are proposed in this paper. These two models allow correct simulation of the physical processes, such as saturation increase due to rainwater infiltration and mechanical degradation as far as undrained instability, which govern postfailure evolution. The paper concludes with the presentation of a framework proposal to be used in defining a soil database, as well as a framework for flowslide generation forecast to be used for implementation within EWSs.
The meandering Ribb River flows in northwest Ethiopia to Lake Tana, the source of the Blue Nile River. The river has already undergone changes due to several human interventions, such as embanking, sand mining, water extraction and lake level regulation for hydropower. At present, a dam and a weir are under construction to store and divert water for irrigation. This will strongly alter both water and sediment discharges to the downstream river reaches, causing adjustments to the morphology. Assessing the current morphodynamic trends is the first necessary step to study the future effects and find ways to mitigate them. This paper presents an analysis of the current and past river based on newly collected data, aerial photographs, SPOT and Google Earth images. The riverbed changes are derived from historical staff gauge height analysis. The effects of sediment mining and water extraction are assessed using the theory of morphodynamic equilibrium. The findings of the analysis show a reduction of sediment transport capacity in the downstream direction, which has resulted in intense sediment deposition, resulting in blockage of the Lower River reach and subsequent channel avulsion. The effects of Lake Tana level regulation on the observed processes appear to be minor.