GCB Bioenergy
1757-1693
1757-1707
Đức
Cơ quản chủ quản: Wiley-VCH Verlag , WILEY
Lĩnh vực:
Agronomy and Crop ScienceWaste Management and DisposalForestryRenewable Energy, Sustainability and the Environment
Các bài báo tiêu biểu
Biochar stability in soil: meta‐analysis of decomposition and priming effects Abstract The stability and decomposition of biochar are fundamental to understand its persistence in soil, its contribution to carbon (C) sequestration, and thus its role in the global C cycle. Our current knowledge about the degradability of biochar, however, is limited. Using 128 observations of biochar‐derived CO 2 from 24 studies with stable (13 C) and radioactive (14 C) carbon isotopes, we meta‐analyzed the biochar decomposition in soil and estimated its mean residence time (MRT ). The decomposed amount of biochar increased logarithmically with experimental duration, and the decomposition rate decreased with time. The biochar decomposition rate varied significantly with experimental duration, feedstock, pyrolysis temperature, and soil clay content. The MRT s of labile and recalcitrant biochar C pools were estimated to be about 108 days and 556 years with pool sizes of 3% and 97%, respectively. These results show that only a small part of biochar is bioavailable and that the remaining 97% contribute directly to long‐term C sequestration in soil. The second database (116 observations from 21 studies) was used to evaluate the priming effects after biochar addition. Biochar slightly retarded the mineralization of soil organic matter (SOM ; overall mean: −3.8%, 95% CI = −8.1–0.8%) compared to the soil without biochar addition. Significant negative priming was common for studies with a duration shorter than half a year (−8.6%), crop‐derived biochar (−20.3%), fast pyrolysis (−18.9%), the lowest pyrolysis temperature (−18.5%), and small application amounts (−11.9%). In contrast, biochar addition to sandy soils strongly stimulated SOM mineralization by 20.8%. This indicates that biochar stimulates microbial activities especially in soils with low fertility. Furthermore, abiotic and biotic processes, as well as the characteristics of biochar and soils, affecting biochar decomposition are discussed. We conclude that biochar can persist in soils on a centennial scale and that it has a positive effect on SOM dynamics and thus on C sequestration.
Tập 8 Số 3 - Trang 512-523 - 2016
The effect of pyrolysis conditions on biochar stability as determined by three methods Abstract Biochar is the porous, carbonaceous material produced by thermochemical treatment of organic materials in an oxygen‐limited environment. In general, most biochar can be considered resistant to chemical and biological decomposition, and therefore suitable for carbon (C) sequestration. However, to assess the C sequestration potential of different types of biochar, a reliable determination of their stability is needed. Several techniques for assessing biochar stability have been proposed, e.g. proximate analysis, oxygen (O): C ratio and hydrogen (H): C ratio; however, none of them are yet widely recognized nor validated for this purpose. Biochar produced from three feedstocks (Pine, Rice husk and Wheat straw) at four temperatures (350, 450, 550 and 650 °C) and two heating rates (5 and 100 °C min−1 ) was analysed using three methods of stability determination: proximate analysis, ultimate analysis and a new analytical tool developed at the UK Biochar Research Centre known as the Edinburgh accelerated ageing tool (Edinburgh stability tool). As expected, increased pyrolysis temperatures resulted in higher fractions of stable C and total C due to an increased release of volatiles. Data from the Edinburgh stability tool were compared with those obtained by the other methods, i.e. fixed C, volatile matter, O : C and H : C ratios, to investigate potential relationships between them. Results of this comparison showed that there was a strong correlation (R > 0.79) between the stable C determined by the Edinburgh stability tool and fixed C, volatile matter and O : C, however, H : C showed a weaker correlation (R = 0.65). An understanding of the influence of feedstock and production conditions on the long‐term stability of biochar is pivotal for its function as a C mitigation measure, as production and use of unstable biochar would result in a relatively rapid return of C into the atmosphere, thus potentially intensifying climate change rather than alleviating it.
Tập 5 Số 2 - Trang 122-131 - 2013
Land‐use change to bioenergy production in <scp>E</scp>urope: implications for the greenhouse gas balance and soil carbon Abstract Bioenergy from crops is expected to make a considerable contribution to climate change mitigation. However, bioenergy is not necessarily carbon neutral because emissions of CO 2 , N2 O and CH 4 during crop production may reduce or completely counterbalance CO 2 savings of the substituted fossil fuels. These greenhouse gases (GHG s) need to be included into the carbon footprint calculation of different bioenergy crops under a range of soil conditions and management practices. This review compiles existing knowledge on agronomic and environmental constraints and GHG balances of the major E uropean bioenergy crops, although it focuses on dedicated perennial crops such as M iscanthus and short rotation coppice species. Such second‐generation crops account for only 3% of the current E uropean bioenergy production, but field data suggest they emit 40% to >99% less N2 O than conventional annual crops. This is a result of lower fertilizer requirements as well as a higher N‐use efficiency, due to effective N‐recycling. Perennial energy crops have the potential to sequester additional carbon in soil biomass if established on former cropland (0.44 Mg soil C ha−1 yr−1 for poplar and willow and 0.66 Mg soil C ha−1 yr−1 for M iscanthus ). However, there was no positive or even negative effects on the C balance if energy crops are established on former grassland. Increased bioenergy production may also result in direct and indirect land‐use changes with potential high C losses when native vegetation is converted to annual crops. Although dedicated perennial energy crops have a high potential to improve the GHG balance of bioenergy production, several agronomic and economic constraints still have to be overcome.
Tập 4 Số 4 - Trang 372-391 - 2012
Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives Abstract Lignocellulose is the most abundant biomass on Earth, with an estimated 181.5 billion tonnes produced annually. Of the 8.2 billion tonnes that are currently used, about 7 billion tonnes are produced from dedicated agricultural, grass and forest land and another 1.2 billion tonnes stem from agricultural residues. Economic and environmentally efficient pathways for production and utilization of lignocellulose for chemical products and energy are needed to expand the bioeconomy. This opinion paper arose from the research network “Lignocellulose as new resource platform for novel materials and products” funded by the German federal state of Baden‐Württemberg and summarizes original research presented in this special issue. It first discusses how the supply of lignocellulosic biomass can be organized sustainably and suggests that perennial biomass crops (PBC) are likely to play an important role in future regional biomass supply to European lignocellulosic biorefineries. Dedicated PBC production has the advantage of delivering biomass with reliable quantity and quality. The tailoring of PBC quality through crop breeding and management can support the integration of lignocellulosic value chains. Two biorefinery concepts using lignocellulosic biomass are then compared and discussed: the syngas biorefinery and the lignocellulosic biorefinery. Syngas biorefineries are less sensitive to biomass qualities and are technically relatively advanced, but require high investments and large‐scale facilities to be economically feasible. Lignocellulosic biorefineries require multiple processing steps to separate the recalcitrant lignin from cellulose and hemicellulose and convert the intermediates into valuable products. The refining processes for high‐quality lignin and hemicellulose fractions still need to be further developed. A concept of a modular lignocellulosic biorefinery is presented that could be flexibly adapted for a range of feedstock and products by combining appropriate technologies either at the same location or in a decentralized form.
Tập 11 Số 1 - Trang 107-117 - 2019
Effects of biochar application on soil greenhouse gas fluxes: a meta‐analysis Abstract Biochar application to soils may increase carbon (C) sequestration due to the inputs of recalcitrant organic C. However, the effects of biochar application on the soil greenhouse gas (GHG ) fluxes appear variable among many case studies; therefore, the efficacy of biochar as a carbon sequestration agent for climate change mitigation remains uncertain. We performed a meta‐analysis of 91 published papers with 552 paired comparisons to obtain a central tendency of three main GHG fluxes (i.e., CO 2 , CH 4 , and N2 O) in response to biochar application. Our results showed that biochar application significantly increased soil CO 2 fluxes by 22.14%, but decreased N2 O fluxes by 30.92% and did not affect CH 4 fluxes. As a consequence, biochar application may significantly contribute to an increased global warming potential (GWP ) of total soil GHG fluxes due to the large stimulation of CO 2 fluxes. However, soil CO 2 fluxes were suppressed when biochar was added to fertilized soils, indicating that biochar application is unlikely to stimulate CO 2 fluxes in the agriculture sector, in which N fertilizer inputs are common. Responses of soil GHG fluxes mainly varied with biochar feedstock source and soil texture and the pyrolysis temperature of biochar. Soil and biochar pH , biochar applied rate, and latitude also influence soil GHG fluxes, but to a more limited extent. Our findings provide a scientific basis for developing more rational strategies toward widespread adoption of biochar as a soil amendment for climate change mitigation.
Tập 9 Số 4 - Trang 743-755 - 2017
Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar‐amended soil: a review Abstract Residual pollutants including polycyclic aromatic hydrocarbons (PAH s), volatile organic compounds (VOC s), and carbon (aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass and remain on the solid coproduct called biochar. Such pollutants could have adverse effects on the plant growth as well as microbial community in soil. Although biochar has been proposed as a ‘carbon negative strategy’ to mitigate the greenhouse gas emissions, the impacts of its application with respect to long‐term persistence and bioavailability of hazardous components are not clear. Moreover, the co‐occurrence of low molecular weight VOC s with PAH s in biochar may exert further phytotoxic effects. This review describes the basic need to unravel key mechanisms driving the storage vs. emission of these organics and the dynamics between the sorbent (biochar) and soil microbes. Moreover, there is an urgent need for standardized methods for quantitative analysis of PAH s and VOC s in biochar under environmentally relevant conditions. This review is also extended to cover current research gaps including the influence of biochar application on the short‐ and long‐term fate of PAHs and VOCs and the proper control tactics for biochar quality and associated risk.
Tập 9 Số 6 - Trang 990-1004 - 2017
Trade‐offs between land and water requirements for large‐scale bioenergy production Abstract Bioenergy is expected to play an important role in the future energy mix as it can substitute fossil fuels and contribute to climate change mitigation. However, large‐scale bioenergy cultivation may put substantial pressure on land and water resources. While irrigated bioenergy production can reduce the pressure on land due to higher yields, associated irrigation water requirements may lead to degradation of freshwater ecosystems and to conflicts with other potential users. In this article, we investigate the trade‐offs between land and water requirements of large‐scale bioenergy production. To this end, we adopt an exogenous demand trajectory for bioenergy from dedicated energy crops, targeted at limiting greenhouse gas emissions in the energy sector to 1100 Gt carbon dioxide equivalent until 2095. We then use the spatially explicit global land‐ and water‐use allocation model MA gPIE to project the implications of this bioenergy target for global land and water resources. We find that producing 300 EJ yr−1 of bioenergy in 2095 from dedicated bioenergy crops is likely to double agricultural water withdrawals if no explicit water protection policies are implemented. Since current human water withdrawals are dominated by agriculture and already lead to ecosystem degradation and biodiversity loss, such a doubling will pose a severe threat to freshwater ecosystems. If irrigated bioenergy production is prohibited to prevent negative impacts of bioenergy cultivation on water resources, bioenergy land requirements for meeting a 300 EJ yr−1 bioenergy target increase substantially (+ 41%) – mainly at the expense of pasture areas and tropical forests. Thus, avoiding negative environmental impacts of large‐scale bioenergy production will require policies that balance associated water and land requirements.
Tập 8 Số 1 - Trang 11-24 - 2016
Yields of <i><scp>M</scp>iscanthus</i> × <i>giganteus</i> and <i><scp>P</scp>anicum virgatum</i> decline with stand age in the Midwestern <scp>USA</scp> Abstract For the C4 perennial grasses, M iscanthus × giganteus and Panicum virgatum (switchgrass) to be successful for bioenergy production they must maintain high yields over the long term. Previous studies under the less conducive climate for productivity in N.W. Europe found little or no yield decline in M . × giganteus in the long term. This study provides the first analysis of whether yield decline occurs in M . × giganteus under United States. Midwest conditions in side‐by‐side trials with P . virgatum over 8–10 years at seven locations across Illinois. The effect of stand age was determined by using a linear regression model that included effects of weather. M iscanthus × giganteus produced yields more than twice that of P . virgatum averaging 23.4 ± 1.2 Mg ha−1 yr−1 and 10.0 ± 0.9 Mg ha−1 yr−1 , respectively, averaged over 8–10 years. Relationships of yield with precipitation and growing degree days were established and used to estimate yields corrected for the stochastic effects of weather. Across all locations and in both species, yield initially increased until it reached a maximum during the fifth growing season and then declined to a stable, but lower level in the eighth. This pattern was more pronounced in M . × giganteus . The mean yields observed over this longer term period of 8–10 years were lower than the yields of the first 5 years. However, this decline was proportionately greater in M . × giganteus than in P . virgatum, suggesting a stronger effect of stand age on M . × giganteus . Based on the average yield over the period of this study, meeting the United States Renewable Fuel Standard mandate of 60 billion liters of cellulosic ethanol by 2022, would require 6.8 Mha of M . × giganteus or 15.8 Mha of P . virgatum . These appear manageable numbers for the United States, given the 16.0 Mha in the farmland Conservation Reserve Program in addition to another 13.0 Mha abandoned from agriculture in the last decade.
Tập 6 Số 1 - Trang 1-13 - 2014
Contribution of above‐ and belowground bioenergy crop residues to soil carbon Abstract GHG mitigation by bioenergy crops depends on crop type, management practices, and the input of residue carbon (C) to the soil. Perennial grasses may increase soil C compared to annual crops because of more extensive root systems, but it is less clear how much soil C is derived from above‐ vs. belowground inputs. The objective of this study was to synthesize the existing knowledge regarding soil C inputs from above‐ and belowground crop residues in regions cultivated with sugarcane, corn, and miscanthus, and to predict the impact of residue removal and tillage on soil C stocks. The literature review showed that aboveground inputs to soil C (to 1‐m depth) ranged from 70% to 81% for sugarcane and corn vs. 40% for miscanthus. Modeled aboveground C inputs (to 30 cm depth) ranged from 54% to 82% for sugarcane, but were 67% for miscanthus. Because 50% of observed miscanthus belowground biomass is below 30 cm depth, it may be necessary to increase the depth of modeled soil C dynamics to reconcile modeled belowground C inputs with measured. Modeled removal of aboveground corn residue (25–100%) resulted in C stock reduction in areas of corn–corn–soybean rotation under conventional tillage, while no‐till management lessoned this impact. In sugarcane, soil C stocks were reduced when total aboveground residue was removed at one site, while partial removal of sugarcane residue did not reduce soil C stocks in either area. This study suggests that aboveground crop residues were the main C‐residue source to the soil in the current bioethanol sector (corn and sugarcane) and the indiscriminate removal of crop residues to produce cellulosic biofuels can reduce soil C stocks and reduce the environmental benefits of bioenergy. Moreover, a switch to feedstocks such as miscanthus with more allocation to belowground C could increase soil C stocks at a much faster rate.
Tập 9 Số 8 - Trang 1333-1343 - 2017
Impact of drought stress on growth and quality of miscanthus for biofuel production Abstract Miscanthus has a high potential as a biomass feedstock for biofuel production. Drought tolerance is an important breeding goal in miscanthus as water deficit is a common abiotic stress and crop irrigation is in most cases uneconomical. Drought may not only severely reduce biomass yields, but also affect biomass quality for biofuel production as cell wall remodeling is a common plant response to abiotic stresses. The quality and plant weight of 50 diverse miscanthus genotypes were evaluated under control and drought conditions (28 days no water) in a glasshouse experiment. Overall, drought treatment decreased plant weight by 45%. Drought tolerance – as defined by maintenance of plant weight – varied extensively among the tested miscanthus genotypes and ranged from 30% to 110%. Biomass composition was drastically altered due to drought stress, with large reductions in cell wall and cellulose content and a substantial increase in hemicellulosic polysaccharides. Stress had only a small effect on lignin content. Cell wall structural rigidity was also affected by drought conditions; substantially higher cellulose conversion rates were observed upon enzymatic saccharification of drought‐treated samples with respect to controls. Both cell wall composition and the extent of cell wall plasticity under drought varied extensively among all genotypes, but only weak correlations were found with the level of drought tolerance, suggesting their independent genetic control. High drought tolerance and biomass quality can thus potentially be advanced simultaneously. The extensive genotypic variation found for most traits in the evaluated miscanthus germplasm provides ample scope for breeding of drought‐tolerant varieties that are able to produce substantial yields of high‐quality biomass under water deficit conditions. The higher degradability of drought‐treated samples makes miscanthus an interesting crop for the production of second‐generation biofuels in marginal soils.
Tập 9 Số 4 - Trang 770-782 - 2017