Land‐use change to bioenergy production in <scp>E</scp>urope: implications for the greenhouse gas balance and soil carbon

GCB Bioenergy - Tập 4 Số 4 - Trang 372-391 - 2012
Axel Don1, Bruce Osborne2, Astley Hastings3, Ute Skiba4, Søren Christensen5, Julia Drewer4, Heinz Flessa1, Adrian Leip1, Niina Hyvönen6, Michael B. Jones7, Gary Lanigan8, Ülo Mander9, Andrea Monti10, Sylvestre Njakou Djomo11, John F. Valentine12, Katja Walter1, Walter Zegada‐Lizarazu10, Terenzio Zenone13
1Johann Heinrich von Thünen‐Institute, Institute of Agricultural Climate Research, Bundesallee 50, 38116 Braunschweig, Germany
2UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
3Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St Machars Drive, Aberdeen, AB24 3UU Scotland
4Centre for Ecology and Hydrology, Bush Estate, Penicuik EH26 0QB, UK
5Biosystems Division Risø National Laboratory for Sustainable Energy Technical University of Denmark PO Box 49 4000 Roskilde Denmark
6Department of Environmental Science, University of Eastern Finland, BioTeknia 2, PO Box 1627, FI-70211 Kuopio, Finland
7Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
8Teagasc, Johnstown Castle Research Centre, Wexford, Ireland
9Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise St. 46, 51014, Tartu, Estonia
10Department of AgroEnvironmental Science and Technology, University of Bologna, Viale Fanin, 44, 40127 Bologna, Italy
11Department of Biology, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk, Belgium
12Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth SY23 3EB, UK
13Department of Environmental Sciences, University of Toledo, Toledo, 43606 OH, USA

Tóm tắt

AbstractBioenergy from crops is expected to make a considerable contribution to climate change mitigation. However, bioenergy is not necessarily carbon neutral because emissions of CO2, N2O and CH4 during crop production may reduce or completely counterbalance CO2 savings of the substituted fossil fuels. These greenhouse gases (GHGs) need to be included into the carbon footprint calculation of different bioenergy crops under a range of soil conditions and management practices. This review compiles existing knowledge on agronomic and environmental constraints and GHG balances of the major European bioenergy crops, although it focuses on dedicated perennial crops such as Miscanthus and short rotation coppice species. Such second‐generation crops account for only 3% of the current European bioenergy production, but field data suggest they emit 40% to >99% less N2O than conventional annual crops. This is a result of lower fertilizer requirements as well as a higher N‐use efficiency, due to effective N‐recycling. Perennial energy crops have the potential to sequester additional carbon in soil biomass if established on former cropland (0.44 Mg soil C ha−1 yr−1 for poplar and willow and 0.66 Mg soil C ha−1 yr−1 for Miscanthus). However, there was no positive or even negative effects on the C balance if energy crops are established on former grassland. Increased bioenergy production may also result in direct and indirect land‐use changes with potential high C losses when native vegetation is converted to annual crops. Although dedicated perennial energy crops have a high potential to improve the GHG balance of bioenergy production, several agronomic and economic constraints still have to be overcome.

Từ khóa


Tài liệu tham khảo

AEBIOM, 2010, European Biomass Statistics, 75

10.1007/s11104-010-0443-x

10.1111/j.1757-1707.2008.01001.x

ArmstrongAP BaroJ DartoyJ GrovesAP NikkonenJ RickeardDJ(2002)CONCAWE Ad Hoc Group on Alternative Fuels Vol. 2/2002. CONCAWE. Available at: http://www.concawe.be (accessed 8 August 2011).

10.1080/00015126509433124

10.2134/jeq1984.00472425001300010024x

Baitz M, 2004, Comparative Life‐Cycle Assessment for SunDiesel (Choren Process) and Conventional Diesel Fuel

10.1016/S0167-1987(99)00074-4

10.1016/S0378-1127(97)00199-0

10.1016/S0959-3780(02)00040-7

10.1016/S0961-9534(02)00185-X

10.1016/S1161-0301(02)00034-5

10.1007/s10457-005-2002-7

10.1016/j.agsy.2007.08.004

10.1016/S0961-9534(97)00043-3

Borek R, 2010, Water implications of selected energy crops cultivated on a field scale, Journal of Food Agriculture & Environment, 8, 1345

Bowyer C, 2010, Anticipated Indirect Land Use Change Associated with Expanded Use of Biofuels and Bioliquids in the EU – An Analysis of the National Renewable Energy Action Plans, 24

10.1016/S0961-9534(01)00054-X

BurniauxJ‐M TruongTP(2002)GTAP‐E: an energy‐environmental version of the GTAP model. InGTAP Technical Paper Vol. 16. West Lafayette USA.

10.1016/S0961-9534(02)00103-4

10.1016/0961-9534(96)00035-9

10.1016/j.indcrop.2008.02.009

10.1111/j.1365-2486.2009.02055.x

10.2134/agronj2001.9351013x

10.1111/j.1365-2486.2007.01438.x

10.1007/s00267-003-9139-9

10.1111/j.1758-2229.2009.00038.x

10.1016/j.biombioe.2003.09.002

10.5194/acp-8-389-2008

Davidson EA, 1991, Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes, 219

Dimitriou I, 2009, A review of the impacts of Short Rotation Coppice cultivation on water issues, Landbauforschung Volkenrode, 59, 197

10.1016/S0038-0717(96)00152-6

10.1111/j.1365-2486.2010.02336.x

10.1111/j.1757-1707.2010.01033.x

10.1039/b922422j

10.1016/j.foreco.2008.08.023

Edwards R, 2010, Indirect Land Use Change from Increased Biofuels Demand ‐ Comparison of Models and Results for Marginal Biofuels Production from Different Feedstocks

EEA, 2006, How Much Bioenergy Can Europe Produce Without Harming the Environment?, 67

10.1111/j.1757-1707.2009.01002.x

10.1016/j.biombioe.2005.09.002

EU, 2007, The Impact of a Minimum 10% Obligation for Biofuel Use in the EU‐27 in 2020 on Agricultural Markets, 10

EU, 2009, Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. O. J. o. t. E. Union

Eulenstein F, 2011, Potenzielle Klimawirkung des Anbaus von Pflanzen zur Erzeugung von Biomasse für, Biokraftstoffé Aufgrund Klimawirksamer Gasemissionen und Weitere Umweltwirkungen, 135

EurObserv'ER(2010)Biogas Barometer. InSystem Solaires le journal des energies renouvelables Vol. 200 pp. 104–119. Available at:http://www.eurobserv-er.org/pdf/baro200b.pdf(accessed 8 August 2011).

European Biodiesel Board, 2010, Production of Biodiesel in the EU

Evans S, 2007, Report to DTI, 91

10.1093/aob/mch101

FAO, 2008, The State of Food and Agriculture ‐ Biofuels Prospects, Risk and Opportunities

10.1126/science.1152747

Finch JW, 2004, The Hydrological Impacts of Energy Crop Production in the UK. Final Report, 151

10.1016/S0961-9534(00)00074-X

10.1029/95JD02270

Flessa H, 1998, Freisetzung und Verbrauch der Klimarelevanten Spurengase N2O und CH4 Beim Anbau Nachwachsender Rohstoffe, 133

FNR, 2010, Annual Report 2009/2010,, 104

Forster P, 2007, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 106

FritscheU(2007)GHG accounting for biofuels: considering CO2 from leakage. InWorking paper prepared for BMU.Oeko‐Institut Darmstadt.

FritscheUR WiegmannK(2008)Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen Berlin.

10.1002/bbb.258

10.1016/j.ecolecon.2008.07.013

10.1016/j.biortech.2007.04.049

10.1093/treephys/25.11.1399

Grace J, 2005, The Carbon Balance of Forest Biomes, Chapter 2, 19

10.1016/S0961-9534(97)10073-3

10.1016/j.biortech.2007.09.055

10.1046/j.1354-1013.2002.00486.x

10.1016/j.soilbio.2003.09.012

10.1016/0961-9534(93)90038-6

10.1016/0038-0717(93)90202-M

10.1016/S0961-9534(03)00102-8

10.1111/j.1757-1707.2009.01012.x

10.1111/j.1757-1707.2009.01007.x

10.1016/j.biombioe.2003.10.005

10.1111/j.1757-1707.2009.01022.x

10.1016/S0961-9534(97)10072-1

10.3176/eco.2009.1.03

10.1007/s10705-009-9326-z

10.1016/j.rser.2010.02.014

10.1890/03-5162

10.2136/sssaj1981.03615995004500020017x

10.1016/S1161-0301(01)00110-1

10.1016/j.biortech.2009.04.043

10.1787/renew-2010-en

IPCC, 2006, IPCC Guidelines for National Greenhouse Gas Inventories

JEC(2008)Well‐to‐Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context – Well‐to‐Wheels Study in Version 3.European Council for Automotive R&D (EUCAR) European association for environment health and safety in oil refining and distribution (CONCAWE) the Institute for Environment and Sustainability of the EU Commission's Joint Research Centre (JRC/IES). Available at:http://ies.jrc.ec.europa.eu/uploads/media/V3.1%20TTW%20Report%2007102008.pdf(accessed 8 August 2011).

Jones MB, 2001, Miscanthus for Energy and Fibre

10.1016/S1352-2310(97)00128-3

10.1016/S0378-1127(98)00558-1

10.1002/jpln.200521954

10.1016/S1161-0301(01)00102-2

Kahle P, 2005, Effect of afforestation on soil properties and mycorrhizal formation, Pedosphere, 15, 754

10.1080/03650340701648484

10.1002/1522-2624(200006)163:3<249::AID-JPLN249>3.0.CO;2-Z

10.1111/j.1469-8137.2008.02432.x

10.1016/S0961-9534(02)00177-0

10.1080/07352680500316334

10.1038/370282a0

10.1016/j.agee.2007.12.002

10.1002/jpln.1998.3581610409

10.1016/j.envint.2004.09.005

LarsenSU(2010)Videnscentret for Landbrug. Available at:http://www.landbrugsinfo.dk/Planteavl/Afgroeder/Energiafgroeder/Sider/pl_10_243.aspx(accessed 8 August 2011).

10.1016/S0961-9534(02)00104-6

10.1016/j.agee.2005.08.003

10.1016/S0961-9534(00)00032-5

10.2134/agronj2003.1274

10.1016/S0961-9534(03)00030-8

10.1016/S0378-1127(98)00556-8

10.2136/sssaj1984.03615995004800060013x

10.1016/0961-9534(94)90086-8

10.1080/15435070902886551

10.1007/s11104-010-0292-7

10.1016/S0961-9534(01)00016-2

MatthewsR HenshallP TubbyI(2002) InContract Report to FC DTI and Defra.

10.1098/rstb.1977.0140

10.1016/j.agee.2009.04.007

10.1016/j.biombioe.2008.08.018

10.1016/j.agrformet.2009.07.013

Neitsch SL, 2002, Soil and water assessment tool user's manual, Version 2000. TWRI Report TR‐192

10.1016/S1161-0301(99)00031-3

10.1016/j.cosust.2010.05.006

10.1111/j.1757-1707.2009.01011.x

10.1016/j.enpol.2009.03.051

Palm CA, 1999, Carbon Sequestration and Trace as Emissions in Slash‐and‐Burn and Alternative Land Uses in the Humid Tropics

10.1080/07352680500316433

10.1080/07352680490886905

10.1016/S0961-9534(98)00012-9

10.1016/S0961-9534(97)10028-9

10.1007/s11053-005-4679-8

10.1111/j.1365-2486.2011.02408.x

10.1046/j.1365-2486.2000.00308.x

Quirin M, 2004, CO2 Mitigation Through Biofuels in the Transport Sector ‐ Status and Perspectives

10.1016/B978-0-08-047514-1.50017-2

10.1126/science.289.5486.1922

10.1016/j.still.2008.07.011

10.1016/j.rser.2007.07.008

10.1023/A:1017512205888

10.1016/S0378-1127(00)00319-4

10.3390/ijms9050768

10.1016/j.agee.2007.01.026

10.1016/S0961-9534(97)10032-0

10.1002/jpln.200625111

Scholz V, 2010, Umweltverträglichkeit von Pappen und Weiden im Vergelich mit anderen Energiepflanzen, Agrarholz, 15

10.1016/S0961-9534(02)00036-3

10.1126/science.1151861

10.1126/science.1178797

10.1080/00380768.1990.10415715

10.1016/j.biortech.2009.11.046

10.1016/S1465-9972(00)00016-7

10.1111/j.1365-2486.2008.01704.x

10.1016/0960-8524(93)90086-Q

10.1111/j.1475-2743.2004.tb00366.x

10.1098/rstb.2010.0127

10.1016/j.biombioe.2007.11.001

10.1007/s10705-006-9000-7

10.1126/science.1133306

10.1016/S0961-9534(97)00029-9

10.1016/j.still.2008.08.008

10.2134/agronj2002.0413

WBGU, 2008, Future Bioenergy and Sustainable Land Use

Well R, 2010, Nitrous Oxide and Climate Change, 162

Wichtmann W, 2007, Wetlands: Monitoring, Modeling and Management, 273

10.13031/2013.31032

10.1016/j.agsy.2010.07.005

10.1016/j.biombioe.2009.07.011

Woods J, 2008, Biofuels: Environmental Consequences and Interactions with Changing Land Use, 207

10.1016/S0167-8809(00)00273-5

10.1016/j.biombioe.2010.08.001

10.1002/bbb.242