Foods

  2304-8158

 

  Thụy Sĩ

Cơ quản chủ quản:  MDPI , Multidisciplinary Digital Publishing Institute (MDPI)

Lĩnh vực:
Food ScienceHealth (social science)MicrobiologyHealth Professions (miscellaneous)Plant Science

Các bài báo tiêu biểu

Antiproliferative Rapeseed Defatted Meal Protein and Their Hydrolysates on MCF-7 Breast Cancer Cells and Human Fibroblasts
Tập 10 Số 2 - Trang 309
Romina Lis Ferrero, Carmen Soto‐Maldonado, Caroline Weinstein‐Oppenheimer, Zaida Cabrera, María Elvira Zúñiga‐Hansen
Defatted rapeseed meal (DRM) is a sub-valorized agro-industrial by-product, with a high protein content whose peptides could have potential anticancer activity against cancer cell lines. The objective of the present study is to obtain an enzymatic hydrolysate of rapeseed protein that inhibits proliferation on a breast cancer cell line (MCF-7), but not healthy human fibroblast cells. The DRM was solubilized in an alkaline medium to obtain an alkaline rapeseed extract (RAE). Acid precipitation of the proteins contained in RAE recovered a rapeseed protein isolate (RPI). To produce protein hydrolysates, two alkaline protease and different enzyme/substrate ratios were used. All the protein hydrolysates showed antiproliferative activity on MCF-7 cells. However, only the hydrolysate recovered from the enzymatic hydrolysis of RPI (Degree of hydrolysis (DH ) between 8.5 and 9% (DH1)) did not affect human fibroblast cells, inhibiting 83.9% of MCF-7 cells’ proliferation and showing a mass yield of 22.9% (based on the initial DRM). The SDS-PAGE gel revealed that DH1 was composed mainly of 10 kDa peptides and, to a lesser extent, 5 and 2 kDa. It is concluded that DH1 is a promising peptide extract for future research as a putative anti-breast cancer agent.
Enrichment of Biscuits with Matcha Green Tea Powder: Its Impact on Consumer Acceptability and Acute Metabolic Response
Tập 7 Số 2 - Trang 17
Benjapor Phongnarisorn, Caroline Orfila, Melvin Holmes, Lisa J. Marshall
Matcha green tea powder (MGTP) is made with finely ground green tea leaves that are rich in phytochemicals, most particularly catechins. Shortbread biscuits were enriched with MGTP and evaluated for consumer acceptability and potential functional health properties. Baking decreased the content of total catechins by 19% compared to dough, although epimerization increased the amount of (+)-gallocatechin gallate at the expense of other catechins such as (−)-epigallocatechin gallate. Consumer acceptability tests using a 9-point hedonic scale showed that consumers preferred enriched biscuits with low content of MGTP (2 g of MGTP 100 g−1 of flour), and an increase of sugar content did not significantly improve the acceptability of MGTP-enriched biscuits. Overall, enrichment of biscuits with MGTP did not significantly affect the postprandial glucose or triglyceride response (area under curve) compared to non-enriched biscuits consumed with water or MGTP drink. Enriching biscuits with Matcha green tea is acceptable to consumers, but may not bring significant postprandial effects.
Nutritional Profiling and Preliminary Bioactivity Screening of Five Micro-Algae Strains Cultivated in Northwest Europe
Tập 10 Số 7 - Trang 1516
Joran Verspreet, Lise Soetemans, Caoimhe Gargan, María Hayes, Leen Bastiaens
This study aimed to map the nutritional profile and bioactivities of five microalgae that can be grown in Northwest Europe or areas with similar cultivation conditions. Next to the biochemical composition, the in vitro digestibility of carbohydrates, proteins, and lipids was studied for Chlamydomonas nivalis, Porphyridium purpureum, Chlorella vulgaris, Nannochloropsis gaditana, and Scenedesmus species biomass. These microalgae were also assessed for their ability to inhibit the angiotensin-1-converting enzyme (ACE-1, EC 3.4.15.1), which is known to play a role in the control of blood pressure in mammals. Large differences in organic matter solubility after digestion suggested that a cell disruption step is needed to unlock the majority of the nutrients from N. gaditana and Scenedesmus species biomass. Significant amounts of free glucose (16.4–25.5 g glucose/100 g dry algae) were detected after the digestion of C. nivalis, P. purpureum, and disrupted Scenedesmus. The fatty acid profiles showed major variations, with particularly high Ω-3 fatty acid levels found in N. gaditana (5.5 ± 0.5 g/100 g dry algae), while lipid digestibility ranged from 33.3 ± 6.5% (disrupted N. gaditana) to 67.1 ± 11.2% (P. purpureum). C. vulgaris and disrupted N. gaditana had the highest protein content (45–46% of dry matter), a nitrogen solubility after digestion of 65–71%, and the degree of protein hydrolysis was determined as 31% and 26%, respectively. Microalgae inhibited ACE-1 by 73.4–87.1% at physiologically relevant concentrations compared to a commercial control. These data can assist algae growers and processors in selecting the most suitable algae species for food or feed applications.
Amylose-Lipid Complex as a Fat Replacement in the Preparation of Low-Fat White Pan Bread
Tập 9 Số 2 - Trang 194
Hee-Seon Lee, Kyung-Heon Kim, Sunghoon Park, Sung-Won Hur, Joong‐Hyuck Auh
Amylose-lipid complex (ALC) was prepared with corn starch and stearic acid and used as a shortening replacement in white pan bread preparation. ALCs were prepared using various concentrations of stearic acid to corn starch (1%, 3%, 5%, and 7%) under different temperatures (55, 65, and 75 °C) and for different durations of time (30, 60, and 120 min); then, their complexing properties were assessed using iodine reagent and X-ray diffraction. The complexing reaction at 75 °C for 60 min showed the highest complexing index of the tested conditions; the in vitro digestibility of ALC was lower than that of corn starch. White pan bread was prepared with ALCs and their characteristics, including appearance, loaf volume, and starch retrogradation during storage at room temperature for four days, were compared with those of control bread. With increasing ALC replacement concentrations, loaf volume and shape were significantly affected; however, starch retrogradation was significantly retarded and energy value decreased by ALC replacement. Overall, 50% replacement of shortening by ALC appeared to be a reasonable level for retaining the basic characteristics of the bread while retarding the staling process. These results indicate that ALCs may be potentially useful in the bakery industry for preparing low calorie and low-fat products.
Lime (Citrus aurantifolia (Christm.) Swingle) Essential Oils: Volatile Compounds, Antioxidant Capacity, and Hypolipidemic Effect
Tập 8 Số 9 - Trang 398
Li-Yun Lin, Cheng‐Hung Chuang, Hsin‐Chun Chen, Kai–Min Yang
Lime peels are mainly obtained from the byproducts of the juice manufacturing industry, which we obtained and used to extract essential oil (2.3%) in order to examine the antioxidant and hypolipidaemic effects. We identified 60 volatile compounds of lime essential oil (LEO) with GC/MS, of which the predominant constituents were limonene, γ-terpinene, and β-pinene. Lime essential oil was measured according to the DPPH assay and ABTS assay, with IC50 values of 2.36 mg/mL and 0.26 mg/mL, respectively. This study also explored the protective effects of LEO against lipid-induced hyperlipidemia in a rat model. Two groups of rats received oral LEO in doses of 0.74 g/100 g and 2.23 g/100 g with their diets. Eight weeks later, we found that the administration of LEO improved the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase levels in the hyperlipidemic rats (p < 0.05). Simultaneously, the LEO improved the health of the rats in terms of obesity, atherogenic index, and fatty liver.
Regulation Mechanism of ssDNA Aptamer in Nanozymes and Application of Nanozyme-Based Aptasensors in Food Safety
Tập 11 Số 4 - Trang 544
Lijun Wang, Hong Zhou, Haixia Hu, Qin Wang, Xianggui Chen
Food safety issues are a worldwide concern. Pathogens, toxins, pesticides, veterinary drugs, heavy metals, and illegal additives are frequently reported to contaminate food and pose a serious threat to human health. Conventional detection methods have difficulties fulfilling the requirements for food development in a modern society. Therefore, novel rapid detection methods are urgently needed for on-site and rapid screening of massive food samples. Due to the extraordinary properties of nanozymes and aptamers, biosensors composed of both of them provide considerable advantages in analytical performances, including sensitivity, specificity, repeatability, and accuracy. They are considered a promising complementary detection method on top of conventional ones for the rapid and accurate detection of food contaminants. In recent years, we have witnessed a flourishing of analytical strategies based on aptamers and nanozymes for the detection of food contaminants, especially novel detection models based on the regulation by single-stranded DNA (ssDNA) of nanozyme activity. However, the applications of nanozyme-based aptasensors in food safety are seldom reviewed. Thus, this paper aims to provide a comprehensive review on nanozyme-based aptasensors in food safety, which are arranged according to the different interaction modes of ssDNA and nanozymes: aptasensors based on nanozyme activity either inhibited or enhanced by ssDNA, nanozymes as signal tags, and other methods. Before introducing the nanozyme-based aptasensors, the regulation by ssDNA of nanozyme activity via diverse factors is discussed systematically for precisely tailoring nanozyme activity in biosensors. Furthermore, current challenges are emphasized, and future perspectives are discussed.
Lettuce Contamination and Survival of Salmonella Typhimurium and Listeria monocytogenes in Hydroponic Nutrient Film Technique Systems
Tập 11 Số 21 - Trang 3508
Sanja Ilić, Margaret R. Moodispaw, Lawrence V. Madden, Melanie L. Lewis Ivey
Hydroponic vegetable production is increasing globally, but there is a lack of science-based recommendations to ensure their food safety. Specifically, there is limited evidence for establishing water management strategies. The purpose of this study was to determine the survival of Salmonella Typhimurium and Listeria monocytogenes in commercial nutrient flow technology (NFT) systems during the lifecycle of lettuce exposed to sporadic or extreme contamination. NFT systems were inoculated with Salmonella Typhimurium or Listeria monocytogenes, and nutrient solution, rockwool, roots, and lettuce leaves were collected over the lettuce production cycle for pathogen enumeration and detection. Both human pathogens persisted in the lettuce NFT growing system throughout the growth cycle of lettuce. Salmonella Typhimurium and L. monocytogenes accumulated in rockwool medium and on lettuce roots and were transferred to the leaves at quantifiable levels from the contaminated nutrient solution. In the nutrient solution, Salmonella concentration under sporadic and extreme conditions declined significantly 24 h after inoculation and again 7 days post-inoculation (p < 0.0001). Under extreme conditions, the concentration did not change significantly after 7 days, while under sporadic conditions, the concentration declined again 14 days post-inoculation in the nutrient solution collected from the reservoirs. L. monocytogenes populations in the nutrient solution fluctuated significantly over the 28-day growth cycle (p < 0.0001). Under extreme conditions, L. monocytogenes concentrations in the nutrient solution declined, while under sporadic conditions, the populations increased. The findings of this study, for the first time, describe human pathogen survival in commerical NFT systems and highlight the urgent need for novel approaches to mitigating the risks from nutrient solution contaminaiton in hydroponics.
Proteomics-Based Methodologies for the Detection and Quantification of Seafood Allergens
Tập 9 Số 8 - Trang 1134
Mónica Carrera, Manuel Pazos, Marı́a Gasset
Seafood is considered one of the main food allergen sources by the European Food Safety Authority (EFSA). It comprises several distinct groups of edible aquatic animals, including fish and shellfish, such as crustacean and mollusks. Recently, the EFSA recognized the high risk of food allergy over the world and established the necessity of developing new methodologies for its control. Consequently, accurate, sensitive, and fast detection methods for seafood allergy control and detection in food products are highly recommended. In this work, we present a comprehensive review of the applications of the proteomics methodologies for the detection and quantification of seafood allergens. For this purpose, two consecutive proteomics strategies (discovery and targeted proteomics) that are applied to the study and control of seafood allergies are reviewed in detail. In addition, future directions and new perspectives are also provided.
Industrial Ultrasound Applications in the Extra-Virgin Olive Oil Extraction Process: History, Approaches, and Key Questions
Tập 8 Số 4 - Trang 121
Maria Lisa Clodoveo
Taking an idea from a basic concept to a commercially available product is highly rewarding, but it can be a very long, complex, and difficult journey. Recognizing and understanding the stages of the process and using the right support to help you navigate through it can mean all the difference between success and failure. The road from concept to market is marred with obstacles, and many businesses fail to pass beyond the development stage. A better understanding of the innovation process is essential from the outset if the pioneers of innovation are to overcome the dangers that they are likely to face along the way and maximize their opportunities for success. In the olive oil sector, the most recent radical innovation is the introduction of ultrasound into the industrial extraction process. Many efforts have been made in order to overcome the Valley of Death. The strategy of designing, implementing, and testing an innovative system that combines the mechanical energy of ultrasound with the possibility of modulating the thermal exchange of olive paste (heating or cooling) has enabled the following: (1) Eliminating malaxation by realizing a real continuous process; (2) raising extraction yields by recovering a further quota of extra-virgin olive oil that is usually lost in the pomace; (3) improving the content of antioxidant molecules simultaneously with yields; and (4) offering a sustainable plant solution that can guarantee the right income for producers.
1H NMR Spectroscopy and Multivariate Analysis of Monovarietal EVOOs as a Tool for Modulating Coratina-Based Blends
Tập 3 Số 2 - Trang 238-249
Laura Del Coco, Sandra De Pascali, Francesco Paolo Fanizzi
Coratina cultivar-based olives are very common among 100% Italian extra virgin olive oils (EVOOs). Often, the very spicy character of this cultivar, mostly due to the high polyphenols concentration, requires blending with other “sweetener” oils. In this work, monovarietal EVOO samples from the Coratina cultivar (Apulia, Italy) were investigated and compared with monovarietal EVOO from native or recently introduced Apulian (Italy) cultivars (Ogliarola Garganica, Ogliarola Barese, Cima di Mola, Peranzana, Picholine), from Calabria (Italy) (Carolea and Rossanese) and from other Mediterranean countries, such as Spain (Picual) and Greece (Kalamata and Koroneiki) by 1H NMR spectroscopy and multivariate analysis (principal component analysis (PCA)). In this regard, NMR signals could allow a first qualitative evaluation of the chemical composition of EVOO and, in particular, of its minor component content (phenols and aldehydes), an intrinsic behavior of EVOO taste, related to the cultivar and geographical origins. Moreover, this study offers an opportunity to address blended EVOOs tastes by using oils from a specific region or country of origin.