
Entomologia Experimentalis et Applicata
SCIE-ISI SCOPUS (1958-2023)
1570-7458
0013-8703
Anh Quốc
Cơ quản chủ quản: WILEY , Wiley-Blackwell Publishing Ltd
Các bài báo tiêu biểu
The relationship between oviposition preference and growth, survival, and reproduction of offspring is the crux of the problem in the evolution of host associations between phytophagous insects and plants. Observed relationships between oviposition preference and performance of offspring range from good to poor. At least four hypotheses have been suggested to explain observed use of particular host plants that may not result in the fastest growth rates or greatest pupal masses: time, patch dynamics, parasite versus grazer lifestyles, and enemy‐free space. Our current understanding of these relationships, however, is hampered by an almost complete lack of data on how preference and performance are related genetically. These data are needed to understand the origins of covariance between preference and performance and constraints on the evolution of host associations.
The innate immune system in insects is composed of a large variety of specific and non‐specific responses that are activated in response to the presence of foreign agents. One important element in such responses is the enzyme phenoloxidase (PO). Here, we review recent progress in PO research and discuss new applications in the emerging field of ecological immunology. Phenoloxidase produces indole groups, which are subsequently polymerized to melanin. The enzymatic reactions in turn produce a set of intermediate products such as quinones, diphenols, superoxide, hydrogen peroxide, and reactive nitrogen intermediates, which are important during defense against bacterial (gram+ and −), fungal, and viral agents. Phenoloxidase requires a complex system of activation and inhibition that involves various cell types, PO zymogens, inhibitor enzymes, and signaling molecules. Finally, research in evolutionary ecology has studied the costs of PO in terms of resource use and pleiotropic relations with other key traits and functions. These studies indicate that PO is a costly trait, whose production and maintenance have fitness costs for hosts. Phenoloxidase does not seem to be an indicator of resistance but rather of host condition. Finally, we put forward some basic directions for future investigation of PO aimed at explaining its activating system, its substrates, its coordination with other immune components to fight off pathogens, and variation in PO in relation to gender, life stages, seasonality, and across different host species.
Herbivorous and carnivorous arthropods use plant volatiles when foraging for food. In response to herbivory, plants emit a blend that may be quantitatively and qualitatively different from the blend emitted when intact. This induced volatile blend alters the interactions of the plant with its environment. We review recent developments regarding the induction mechanism as well as the ecological consequences in a multitrophic and evolutionary context. It has been well established that carnivores (predators and parasitoids) are attracted by the volatiles induced by their herbivorous victims. This concerns an active plant response. In the case of attraction of predators, this is likely to result in a fitness benefit to the plant, because through consumption a predator removes the herbivores from the plant. However, the benefit to the plant is less clear when parasitoids are attracted, because parasitisation does usually not result in an instantaneous or in a complete termination of consumption by the herbivore. Recently, empirical evidence has been obtained that shows that the plant's response can increase plant fitness, in terms of seed production, due to a reduced consumption rate of parasitized herbivores. However, apart from a benefit from attracting carnivores, the induced volatiles can have a serious cost because there is an increasing number of studies that show that herbivores can be attracted. However, this does not necessarily result in settlement of the herbivores on the emitting plant. The presence of cues from herbivores and/or carnivores that indicate that the plant is a competitor‐ and/or enemy‐dense space, may lead to an avoidance response. Thus, the benefit of emission of induced volatiles is likely to depend on the prevailing faunal composition. Whether plants can adjust their response and influence the emission of the induced volatiles, taking the prevalent environmental conditions into account, is an interesting question that needs to be addressed. The induced volatiles may also affect interactions of the emitting plant with its neighbours, e.g., through altered competitive ability or by the neighbour exploiting the emitted information.
Major questions to be addressed in this research field comprise mechanistic aspects, such as the identification of the minimally effective blend of volatiles that explains the attraction of carnivores to herbivore‐infested plants, and evolutionary aspects such as the fitness consequences of induced volatiles. The elucidation of mechanistic aspects is important for addressing ecological and evolutionary questions. For instance, an important tool to address ecological and evolutionary aspects would be to have plant pairs that differ in only a single trait. Such plants are likely to become available in the near future as a result of mechanistic studies on signal‐transduction pathways and an increased interest in molecular genetics.
Some statistical problems are added to the growing list of cautionary tales regarding the use of the conventional, ratio‐based nutritional indices (RCR, RGR, ECI, AD and ECD). Analysis of ratios is based on the, probably unrealistic, assumption of an isometric relationship between denominator and numerator variables. Analysis of covariance (ANCOVA) makes less restrictive assumptions, and additionally provides important information about the data which is lost by using ratio variables. We demonstrate, using computer‐generated data sets, some of the pitfalls of statistical analysis of ratios and illustrate how these may be avoided using ANCOVA. Some possible consequences of such statistical iniquities for biological interpretations are discussed.
Last instar larvae of
INDUZIERTE NAHRUNGSPRÄFERENZ BEI SCHMETTERLINGSRAUPEN
Larven des letzten Entwicklungsstadium von
We compared the effects of floral nectar from buckwheat,
The review emphasizes that there are multiple pathways to diapause completion. The programmed course of events is modified by environmental cues. Often chilling is not a prerequisite for the completion of hibernation diapause (examples tabulated). Diapause completion progresses well at intermediate or high temperatures, sometimes it is even stimulated by high or increasing temperature. Low temperatures are important, as they (1) conserve metabolic reserves, (2) prevent resumption of post‐diapause morphogenesis and thus synchronize the life‐cycle, (3) represent contrast to the later increase in temperature. Diapause consists of phases with different prerequisites. There is a principal difference between diapause development and photoperiodic activation as indicated by the subsequent physiological condition of insects.
Insect feeding trials were carried out to determine the effects of incorporating a range of plant derived proteins into artificial diets fed to leafhopper and planthopper pests of rice. The lectins
Acute toxicity of thirty lectins was tested against the pea aphid